在训练阶段。可以通过在引导数据集中进行许多弱学习者来提高模型的性能。包装的一个例子是随机森林算法。合奏方法的类型•投票•行李(减少方差)•提升(减少偏见)•堆叠(改进的预测)结合了多个学习者: - 尽管不同的学习算法通常是成功的,但没有一个算法总是最准确的。现在,我们将讨论由相互补充的多个学习者组成的模型,以便通过将它们结合起来,我们获得了更高的准确性。模型组合方案: - 也有不同的方式组合多个基础学习者以生成最终输出多Expert组合: - 多Expert组合方法具有并行起作用的基础学习者。这些方法依次可以分为两者:在全局方法中,也称为学习者融合,给定输入,所有基础学习者都会生成
主要关键词