尽管个性化学习的好处现在已经有充分的文献记载,但其在学校中的概括受到高层规模的挑战。诸如智能辅导系统(ITS)之类的教育技术可能有助于应对这一挑战并帮助教师和学生。最近,利用了一种利用好奇心驱动的学习模型的方法来构建其个性化练习序列。基于学习进度假设(LPH),这种方法包括提出学生练习,以最大程度地提高学习进度,并使用多武力的强盗机器学习技术逐渐识别。与人类专家设计的课程相比,与人类专家相比,在实地研究中以前显示了所产生的算法(ZPDE)在学习表现方面更有效。但是,有两个限制。首先,没有评估动机影响。第二,ZPDE算法并没有使学生能够表达选择。代理中的这种局限性与最初与建模好奇心驱动的学习有关的LPH理论不符。在这里,我们介绍了一个系统(ZCO),该系统(ZCO)结合了使用LP的自适应运动提议,并有可能使学生做出选择。这些选择的可能性涉及锻炼难度正交的维度,并且是许多现有教育技术的游戏化实例。我们首先表明,基于LP的个性化改善了学习绩效(再现和巩固先前的结果),同时产生积极而激励的学习经验。我们提出了一项广泛的现场研究(来自11所学校的265个7-8岁儿童,RCT设计),将基于LP的自动课程生成系统与手工设计的课程进行了比较,无论有没有自我选择。然后,我们表明,增加自我选择作为嬉戏的功能,触发了学习者的内在动机,并增强了基于LP的个性化的学习有效性。这样做,它加强了认真游戏中内在动机与表现进步之间的联系。相反,对于手工设计的线性路径,观察到了嬉戏特征的有害效果。因此,只有在课程个性化对学习者有效的情况下,由嬉戏的功能引起的内在动机才是有益的。由于在市场上可用的非适应性教育技术中使用了嬉戏的功能,因此值得关注的结果。
主要关键词