复合材料,尤其是碳纤维增强聚合物(CFRP),是现在在飞机,海洋和其他应用中常用的高性能结构材料类别,在汽车和土木工程应用中新兴的大规模使用。回收这些材料的困难是阻止其在大型市场中进一步应用的关键障碍。数十年来,工程界一直追求物理方法,以从寿命末期复合废物中回收价值。这项工作已经生成了可扩展的方法,可以从CFRP废物中恢复适中的值,但是由于其低值回收率,这些方法应用于CFRP废物的一小部分。相比之下,相对较少的回收CFRP的方法是基于系统地解构将它们融合在一起的热固性聚合物的战略方法。在本焦点文章中,我们将展示这些以结构为中心的CFRP回收方法的出现,并说明了这项研究的道路,以最终实现方法,以恢复包括现代CFRP的加固纤维和构成构成现代CFRP的热固材料。
Peel ISO 14679,ASTM D1184,EN 1966,ASTM D1781,EN 2243-3,ISO 4578,ASTM D3167,EN 1464,EN 2243-2,EN 2243-2,EN ISO 11339,ASTM D1876,ASTM D1876,ISO 8510-1,EN1,ASTM D6862,ASTM D6862,ASTM DMDM D. ISO 8510-2,ASTM D903,ASTM D3330(方法A,B - E),EN 28510-2
新兴的研究主要涉及与未来行业新材料设计有关的环境和经济问题。在过去的几十年中,各种工业部门都试图用天然纤维作为聚合物复合材料的增强剂代替合成纤维。复合材料由于其有利和出色的特性而为一个年龄提供了大量的研究和工业工作。此外,它们可以通过低投资生产和处理[1]。复合材料是纤维/填充剂和矩阵(聚合物)的组合。可以通过使用基本聚合物基质的杂化(一两个纤维)来安排纤维和基质的组合。使用纤维的主要目的是为复合材料提供强度。影响纤维的特性的因素是长度,方向,形状和材料[2]。基于用于制造的聚合物,可以自然或合成选择纤维。纤维称为天然纤维,例如黄麻,拉米,剑麻,大麻,coir,grewia optiva,silk,bamboo等。另一方面,通过各种人造过程制造的纤维称为合成纤维,例如碳,凯夫拉尔,玻璃等。自然和合成纤维在用于制造复合材料的聚合物方面都有其自己的优点和缺点。天然纤维的另一个主要缺点是由于存在纤维素而对水的影响。有时,纤维以混合形式应用于两者的优势与合成纤维相比,天然纤维是环境友好,可再生,便宜,非危险性,非抛光和易于使用的,但是使用天然纤维的弊端与合成纤维相比是低的机械性能[3]。这种亲水性会导致纤维和基质之间的界面粘合不佳。另一方面,合成纤维,是疏水材料,与聚体形成良好的键合。
MOF已被用作抗菌物质,因为它们本质上是无毒的且稳定的。银基MOF(AG-MOF)由于其广泛的有效抗菌特性而被认为是理想的抗菌材料。48此外,将表面活性剂49添加并固定在固体底物上的MOF 50分别稳定了分散的MOF并提高其水性稳定性,从而改善了其抗菌活性。MOF提供了与传统材料有关药物传递应用的有希望的好处,包括精确控制孔径的大小和形状,以及修改组合和结构的能力,以及展示的生物降解性,出色的加载能力,受控药物释放以及提供多样性功能的能力。51
带有混合填充剂的抽象聚合物纳米复合材料已用作电磁干扰(EMI)屏蔽应用的替代材料。磁性碳纳米纤维(MAG-CNF)和二氧化钛(TIO 2)的组合产生独特的混合填充剂,可以改善聚合物材料的物理和机械性能。这项研究的重点是评估添加amigated mag-CNF-Tio 2作为环氧树脂 - 二聚酰亚胺复合材料中的混合填充剂的影响。胺化。然后,使用氨加州杂种填充剂来增强环氧树脂和聚酰亚胺复合材料。复合材料的宏观外观显示出增加的同质性或均匀性。使用傅立叶变换红外(FTIR)光谱法分析了成功的胺化,从而揭示了胺功能组的存在,如胺吸收在3773 cm -1(N -H)和1336 cm -1时所示。然后,根据热性能,机械性能(拉伸强度和硬度)和电磁干扰辐射评估了环氧树脂 - 聚二酰亚胺复合材料与氨基化mag-CNF-TIO 2杂交填充物的共价强化。热重量分析(TGA)曲线显示复合材料的降解,因为聚酰亚胺和环氧树脂之间的化学键破裂。由于聚合物和填充剂之间更强的共价交联,带有胺修饰填充剂的复合材料比没有加固的复合材料具有更高的机械性能。此外,通过氨基化的mag-CNF-TIO 2增强的环氧树脂 - 聚二酰亚胺复合材料也表现出提高的电磁屏蔽能力。关键字:磁性碳纳米纤维,二氧化钛,环氧树脂,聚酰亚胺,EMI屏蔽
第 1 部分(第 1-23 章)涵盖了各种分析主题。解决方案很简单,没有复杂的数学表达式。这与典型的工程分析一致。此外,复杂的数学表达式不一定能提高准确性,可能会错误地暗示纯分析解决方案适用于复合材料。实用的复合材料分析方法(尤其是与强度预测相关的方法)通常是半经验性的,需要特定的测试数据来开发经过验证的分析方法;复合材料必须考虑缺口敏感性、冲击损伤、可修复性等。付出了相当大的努力来解释为什么实际方法有时不同于学术解决方案的原因;还讨论了纯分析方法的缺点。相比之下,金属的学术解决方案往往能很好地延续到实际方法中。机械性能(其中许多是复合材料所独有的)也在第 1 部分中进行了讨论:了解这些性能对于用于飞机结构的复合层压板的分析至关重要。还包括复合层压板及其使用结构的设计考虑因素。对于典型结构,尽可能使用标准设计实践非常重要,因为复合材料具有多种故障模式,当设计超出典型设计空间时,其中一些故障模式比金属更难预测(也更难容忍)。
欧盟可持续发展和循环性的驱动力 欧洲绿色协议是欧盟委员会应对气候变化举措的核心。欧盟委员会的目标是到 2050 年使欧盟成为第一个气候中和大陆,这一目标正在塑造欧洲工业的未来。两项与复合材料特别相关的相关战略是净零工业法案 (NZIA) 和工业领导力先进材料通报。NZIA 是一项源自绿色协议工业计划的倡议,旨在扩大欧盟实现气候中和所需技术的制造能力,例如太阳能电池板、风力涡轮机、热泵、电池、电解器和核技术,包括这些技术的关键部件,例如风力涡轮机的转子叶片。欧洲议会和欧洲理事会于 2024 年 2 月就 NZIA 达成政治协议。一旦正式通过,该协议将立即生效。工业领导力先进材料通报于 2024 年 2 月发布。该通报将包括复合材料在内的先进材料确定为实现绿色协议目标的关键材料系列。拟议战略旨在推动欧盟在先进材料领域成为工业领袖。能源、建筑、交通和电子等多个行业已被确定为初步优先事项,并且有可能将其扩展到太空和国防。虽然该战略没有明确提到环境影响和循环性,但相关政策领域(新西兰工业协会、欧洲绿色协议、零污染行动计划、绿色协议工业计划、化学品可持续发展战略、欧洲工业战略、循环经济行动计划、关键原材料法案、芯片法案)毫无疑问地表明,这些将成为未来几十年复合材料行业的核心主题。
摘要:本文描述了暴露于紫外线辐射和/或冷凝下的 IM7/997 碳纤维增强环氧树脂的降解情况。根据对物理和化学降解的观察,已确定这些环境以协同方式起作用,导致环氧树脂基质大量侵蚀,从而导致机械性能下降。基质主导性能受到的影响最大,在仅经过 1000 小时的紫外线辐射和冷凝循环暴露后,横向拉伸强度就下降了 29%。虽然在研究的暴露时间内纵向纤维主导性能不受影响,但已注意到,大量的基质侵蚀最终会限制有效载荷传递到增强纤维,并导致甚至沿纤维主导材料方向的机械性能下降。
实施流程改进:该项目提出了一种分层方法来定义和缓解与将 OOA 材料系统扩展到通常与海底战斗人员相关的厚、大表面积组件相关的问题。使用试样级测试来确定基线结构性能,然后进行中等尺寸的部件制造和测试活动,以展示中级可扩展性和性能转换,从而降低与更大规模原型相关的风险。还进行了寿命测试,以提供与模具中延长寿命相关的机械击倒。