传热设备,例如热管,蒸气室,热通道,微通道散热器和毛孔冷却板,依靠二维稳定的稳定热传导来热管理电信,航空航天,航空航天和微电极的热传播组件。传导形状因子可以评估这些设备的二维稳定热传导。设备的nulus的几何形状及其在热生成组件上的机械附件可能会有所不同。鉴于单面加热和冷却的突出性,二维热传导通常是通过纳鲁斯扇形进行的。第一次开发了一个分析模型来预测环形扇区的传导形状因子。本模型是先前开发的等效圆形环模的扩展,并应用了等效的同心圆形环扇门。该模型的定量是参数边界几何的有限元元素建模的结果,在相对差异10%的相对差异之内捕获了大多数数据。目前的模型为同心形状的等温边界之间形成的环形扇形的形状因子提供了模拟,封闭形式的分析解决方案。更重要的是,它为设计和优化新型传热设备提供了一个统一的平台。
由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。