目的:将不同饱和度的 C18 脂肪酸(硬脂酸、油酸和亚油酸)与醋酸亮丙瑞林(LEU 醋酸盐)的羟基结合,并研究通过自组装纳米颗粒 (L18FNs) 的控制释放和增强渗透性。方法:用苯甲酰氯和 DMAP(4-二甲基氨基吡啶)进行 Yamaguchi 酯化,使脂肪酸与 LEU 的羟基结合。然后将这三种结合物分别命名为硬脂酸结合的 LEU、LSC、油酸结合的 LEU、LOC 和亚油酸结合的 LEU、LLC。使用制备型 HPLC (Prep-HPLC) 纯化结合物 (L18FCs),并通过各种仪器分析进行鉴定。结果:评估了每种 L18FN 的电位、粒度和形态。 LSNs由于饱和脂肪链的疏水性较高,因此zeta电位值相对较低,粒径较大,而LLNs则表现出较高的zeta电位和较小的粒径。在人血浆中,LLC的降解速度最快,累积药物释放量最高。通过Franz扩散池实验分析了L18FNs的渗透性,证实了脂肪酸的饱和度影响LFNs的渗透性。纳米化后,由于粒径较大,LSNs的渗透性并没有显著提高,而LONs和LLNs的渗透性分别是LEU的1.56倍和1.85倍。结论:利用不同饱和度的脂肪酸结合肽类药物,可以通过自组装和物理化学性质的修饰,提供药物的多功能性。关键词:醋酸亮丙瑞林 羟基靶向结合 不同饱和度C18脂肪酸 脂肪酸结合亮丙瑞林 自组装纳米粒子 控制释放 增强渗透性
Sumo,于1996年发现,在真核生物中广泛表达,以调节靶蛋白定位,活性以及通过共价修饰底物蛋白质与其他生物大分子的相互作用(Chang和Yeh,2020)。由人类基因组编码的五个不同的SUMO蛋白,包括SUMO1,SUMO2,SUMO3,SUMO4和SUMO5。sumo1,sumo2和sumo3是主要的SUMO蛋白,而SUMO4和SUMO5的表达仅限于特定组织(Kukkula等,2021)。SUMO2和SUMO3之间的氨基酸序列为97%同源,而它们与SUMO1仅具有50%同源性(Gareau and Lima,2010年)。因为SUMO2和SUMO3不能用抗体区分。这两个同工型共同称为SUMO2/3(Hickey等,2012)。不同的氨基酸序列会导致SUMO1和SUMO2/ 3修饰不同的底物(Shen等,2006)。作为关键蛋白质后翻译改性(PTM),Sumoylation参与了各种生物学过程,包括基因表达,DNA复制/修复,RNA处理,RNA加工和核总质质转运。sumoylation是一种动态且可逆的酶促级联反应过程,它是由Sumo特异性激活酶(E1; SAE1和SAE2),结合酶(E2; UBC9)和连接酶(E3)(E3)(Zhao,2018)催化的。Sumoylation过程包括四个阶段:成熟,激活,结合和连接(Ryu等,2020)。相互结合途径的第一步是通过水解ATP裂解其COOH末端,以暴露共轭所需的Diglycine(GG)残基。第二,成熟的相扑蛋白通过与激活酶E1结合而激活。然后将相扑蛋白转移到共轭酶E2中。最后,Sumo在连接酶E3的辅助下与底物上的特异性赖氨酸残基(K)形成异肽键(图1)。目标
摘要:维度在有机半导体的电荷传输特性中起重要作用。尽管三维半导体(例如Si)在无机材料中很常见,但在三维有机聚合物中赋予了电导率,这是有挑战性的。现在,使用无催化剂的Diels-Alder Cycloadition聚合合成了三维P-偶联的多孔有机聚合物(3D P-POP),然后提出了酸促进的芳香化。具有801 m 2 g 1的表面积,在整个碳主链中完全结合,在用I 2蒸气处理后的6(2)10 4 SCM 1的电导率为6(2)10 4 SCM 1,3D P-POP是新型永久性多孔3D 3D有机半导体的首位成员。P孔有机聚合物(POP)由于其永久性孔隙度,可调孔径,结构模块化,大表面积和高理化稳定性,因此引起了人们的注意。In partic- ular, POPs [1] with extended p -electron conjugation are attractive for their desirable properties in high electron mobility and electrical conductivities, allowing for low-cost and lightweight organic semiconductor applications such as light-emitting diodes, solar cells, field-effect transistors, organic lasers, battery electrodes, and photocatalysis.[2]迄今为止,已经有许多二维(2D)P-共轭流行音乐,例如用于太阳能电池应用的基于噻吩的CMP [3]和I 2掺杂的JUC-Z2 [4],用于电化学离子传感,以及对2D POROFE for PhotemoConductors sppped sppped sppped spppations secting secting secting secting secting s extrochemical离子传感。[5]通过创建具有相似电导率但较高表面积和较低密度的3D聚合物来增加电荷传输的维度,这可能对许多应用(例如催化和气体传感)有益。[6]的确,3D POP的骨干通常合并SP 3碳中心,[7]破坏了P -Conju-
近红外光免疫疗法 (NIR-PIT) 是一种新型的癌症靶向治疗方法,通过光敏剂(例如 NIR 酞菁染料 IRDye700DX)和癌症靶向部分(例如单克隆抗体,moAb)之间的化学结合实现。结合物在体内递送通过与细胞表面受体或抗原结合导致在肿瘤细胞表面积聚。在部署局部 NIR 光后,结合物的照射会导致快速的靶向细胞死亡。然而,产生细胞毒作用的作用机制尚未完全了解。在此,我们汇集了来自各种癌症的临床前和临床研究中有关 NIR-PIT 的当前知识,重点介绍了关键的未解答研究问题。此外,我们还讨论了如何使用这种新颖的治疗方案来增强对实体癌的局部控制。
小的泛素样修饰者(SUMO)信号级联对于基因表达,基因组完整性和细胞周期进程至关重要。在这篇综述中,我们讨论了Sumo在癌症中可能扮演的重要作用以及如何靶向SUMO信号。最近开发了小分子抑制剂,可以实现Sumoylation途径的治疗靶向。阻止Sumoylation不仅会导致癌细胞增殖减少,而且还通过刺激干扰素(IFN)信号传导增加了抗肿瘤免疫反应,这表明Sumoylation抑制剂具有双重作用模式,可在针对癌症的治疗中使用。正在持续搜索可以用Sumoylation抑制作用治疗的肿瘤类型。在未来几年中,采用SUMO共轭抑制药物具有新的治疗策略。
抗体药物偶联物 (ADC) 属于一类日益壮大的高度靶向生物制药药物。它们结合了特异性结合肿瘤表面抗原的单克隆抗体和通过化学接头连接的高效细胞毒性药物 (1)。使用半胱氨酸或赖氨酸残基作为结合位点的 ADC 具有高度异质性,其表征带来了分析挑战 (2)。质谱法是 ADC 开发过程中常规分析的首选工具。在这里,我们描述了两种用于表征 ADC 的分析工作流程,结合了强制降解分析。在第一个工作流程中,ADC 的高通量表征允许在 Bruker MaXis II™ETD 仪器的天然和还原条件下使用设计的 SEC-HPLC-MS 方法每天分析多达 48 个样本,然后使用 Biopharma Compass ® 进行全自动数据分析
原子特征 大小(38) 描述 原子符号 11 [UNK、H、C、N、O、F、P、S、Cl、Br、I] (one-hot) 键度 6 共价键数 [0、1、2、3、4、5] (one-hot) 形式电荷 7 [-3、-2、-1、-0、1、2、3] (one-hot) 杂化 8 [未指定、s、sp、sp2、sp3、sp3d、sp3d2、其他] (one-hot) 手性 4 [未指定、四面体 CW、四面体 CCW、其他] (one-hot) 环 1 原子是否在环中 [0/1] (one-hot) 芳香性 1 原子是否属于芳香系统 [0/1] (one-hot) 键特征 大小(12) 描述 键类型 4 [单键、双键、三键、芳香] (one-hot) 共轭1 键是否为共轭键 [0/1] (one-hot) 环 1 键是否在环中 [0/1] (one-hot) 立体类型 6 [StereoNone, StereoAny, StereoZ, StereoE, Stereocis, Stereotrans] (one-hot)
总结泛素蛋白水解系统在一系列基本的细胞过程中起重要作用。是细胞周期的调节,免疫反应和炎症反应的调节,信号转导途径的控制,发育和分化。这些复杂过程通过单个或子集的蛋白质的特异性降解来控制。deg含量涉及两个连续的步骤,共轭泛素的多种部分以及26S蛋白酶体对标记蛋白的降解。一个重要的问题涉及基于系统特异性的机制的身份。底物识别受一个大型家族泛素连接酶的控制,该连接酶可以认识底物,结合它们并催化/促进它们与泛素的相互作用。生物评估22:442±451,2000。β2000 John Wiley&Sons,Inc。
gmmos和gmos的传染性必须分类为B类传染性物质,A类或生物物质,具体取决于病原体的分类。传染性遗传修饰的生物的例子包括复制能干的腺病毒和慢病毒载体。复制能干的腺病毒和慢病毒载体需要归类为生物物质,类别B。此外,根据NIH附录H-II,“宿主有机体和病毒将作为病因学剂含有重组或合成核酸分子,当它们含有:…(ii)重组或合成核酸分子在毒素或其他植物中涉及毒素或其他植物的植物,并赋予人类,动物,动物,动物,动物的疾病或其他植物的生长,或者侵蚀人类,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物,动物的疾病,并将其侵蚀。在宿主染色体和/或宿主生物中包含熟练质粒或广义转导噬菌体时;…”。