&这些作者为这项工作做出了同样的贡献,应被视为联合第一作者 *通讯作者。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。 黄)。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。黄)。
电化学阻抗光谱(EIS)是锂离子电池健康诊断状态的有效技术,预计通过电池充电曲线预测阻抗光谱频谱预测有望在车辆操作过程中实现电池阻抗测试。然而,充电曲线和阻抗光谱之间的机械关系尚不清楚,这阻碍了基于EIS的预测技术的发展和优化。在本文中,我们通过电池充电电压曲线预测了阻抗光谱,并根据电化学机械分析和机器学习优化了输入。探索了充电曲线,增量容量曲线和阻抗频谱之间的内部电化学关系,从而改善了该预测的物理解释性,并有助于定义机器学习模型输入的适当部分电压范围。基于序列到序列的预测,已经采用了不同的机器学习算法来对所提出的框架进行验证。此外,评估了具有不同部分电压范围的不同部分电压范围的预测,并评估了不同的训练数据比,以证明所提出的方法具有较高的概括和鲁棒性。实验结果表明,适当的部分电压范围具有很高的精度,并且会收敛到电化学分析的发现。通过对电池内电化学反应的冠状分析选择的适当部分电压范围的阻抗光谱的预测误差小于1.9 m o。由Elsevier B.V.和科学出版社出版。即使电压范围降低到3.65–3.75 V,大多数RMSE的预测仍然可靠。2023年科学出版社和达利安化学物理研究所,中国科学院。这是CC下的开放式访问文章(http://creati- vecommons.org/licenses/4.0/)。
眼目光跟踪传统上采用了相机来捕捉参与者的眼睛移动并表征其视觉固定。但是,凝视模式识别仍然具有挑战性。这既是凝视点的稀疏性,并且看似随机的方法参与者在没有设定任务的情况下以陌生的刺激来观看陌生的刺激。我们的论文提出了一种通过将固定的二维(x,y)坐标纳入一维希尔伯特曲线距离度量标准的二维(x,y)坐标,将眼睛注视到机器学习中的方法,使其非常适合实现机器学习。我们将这种方法与传统的基于网格的字符串替代技术进行比较,并在支持向量机和卷积神经网络中证明了实施示例。最后,将进行比较,以检查哪种方法的性能更好。结果表明,此方法既可以对大型数据集中的统计显着性进行动态量化扫描路径有用,又可以调查当参与者在免费观看实验中观察到的不熟悉刺激时,在共享自下而上处理中发现的相似性的细微差别。现实世界的应用程序可以包括与专业知识相关的眼光预测,医疗筛查和图像显着性识别。关键字:神经科学,眼动追踪,分形,支持向量机,卷积神经网络。
移动地铁列车的场景模型可以帮助研究不同火灾位置对弯曲隧道中烟雾传播特征的影响。为此,这项研究采用了三维不稳定的雷诺,平均Navier-Stokes方程方法和重新归一化组的K-ε二方方程湍流模型具有浮力校正,以进行数值分析。使用滑网技术复制火车的运动。结果表明,当火灾在隧道中移动的火车上爆发时,活塞风会导致烟雾的纵向运动。如果与尾车相比,如果烟头回流的头部或中型汽车爆发,烟气回流的时间分别延迟了30 s或17 s。获得的结果为理性提供了理论上的基础,可以很好地控制地铁隧道中的烟气流量并减少火灾事故中的人员伤亡。
摘要 我们在 Garfinkle–Horowitz–Strominger (GHS) 膨胀时空的背景下探索了狄拉克场的三部分熵不确定性和真正的三部分量子性。值得注意的是,霍金辐射导致物理可及区域的量子非局域性衰减,同时保持其总相干性。更重要的是,它展示了物理可及区域和物理不可及区域的相干性之间的内在权衡关系。此外,我们研究了霍金辐射对基于熵的测量不确定性的影响,发现更强的霍金辐射会导致物理可及区域的不确定性增加,而物理不可及区域的不确定性降低。因此,我们的研究可能有助于更好地理解弯曲时空中系统的量子性。将相对论与量子信息科学相结合,为理解黑洞的信息悖论提供了新的途径。
由于石墨烯准粒子的特定特征,可以将量子场理论与凝结物理学之间的物理学提供了重要的联系。在这种情况下给出的一种有希望的结果的方法是量子电动力学减少。在这项工作中,我们考虑了这种形式主义对弯曲空间的自然概括。作为一种应用,我们计算了石墨烯的单环光导率,考虑到曲率诱导的缺陷的存在,例如脱节和由于热闪光而导致的涟漪。这些缺陷是通过曲率效应建模的。当呈正面弯曲时,可以通过考虑合适的化学潜力来局部纳入这些效应,至少就自由费米昂电导率而言。此外,我们证明了这种影响如何有助于最小电导率的决定性增加。
势能(超)表面描述分子系统电子态的能量及其随原子核位置变化而变化,形成分子几何的“能量景观”。它是分析分子构象、过渡态和化学反应动力学的重要工具(Thru lar 等人,1987 年)。在只有两个原子的双原子分子中,原子核的位置只能用一个坐标表示,因此势能表面简化为势能曲线 (PEC)。每条曲线对应一个电子态的群表示和角动量。数据集中核间距离的范围取决于所述系统。我们的数据集由几个选定的双原子分子系统组成,由碱金属原子对创建。这种二聚体在超冷(内部温度在 mK 范围内)分子系统、玻色-爱因斯坦凝聚和化学反应相干控制的应用中特别受关注。强极性超冷分子的可能应用包括利用极性分子之间的长距离电偶极-偶极相互作用来设计光学量子系统。极性分子的内部自由度可用作量子信息的媒介。在强激光场产生的光学晶格中创建、存储和控制此类分子可用于构建量子计算机(Pazyuk,2015 年)。
选择后的过程可用于研究量子多体系统和量子场理论(QFTS)的动态特性。例如,培训测量的非单身动态提供了一种用于控制多体系统的新工具,从而产生了测量引起的相变[1,2]。选择后在黑洞最终提案中也起着关键作用[3],为黑洞信息拼图提供了可能的解决方案。尽管由于鹰辐射而引起的蒸发过程[4,5]可能会将初始纯状态变成混合状态[6],但最终状态在施加在空间外奇异性上的状态下仍然是纯净的,请参见。图。1。但是,已经指出,最终状态必须非常特别才能保留信息[7]。在[8,9]中讨论了最终状态建议与平滑视野的存在之间的张力,最近在[10]中提出了解决方案。另一方面,黑洞蒸发过程中的单位性要求霍金辐射和黑洞之间的量子纠缠量
摘要在本文中探讨了子系统在页面曲线中的共同信息所起的作用。与由黑洞和辐射组成的总系统以及岛上的包含,我们观察到,B +和B-之间的互信息消失了,这又意味着纠缠楔的断开相对应于B + b + b--,产生了乱七八糟的时间。这会导致与正确页面曲线一致的鹰辐射的细粒度熵的时间独立表达。我们还发现了以对数和反向幂定律形式的熵和页面时间的纠正。从重力理论的角度来看,信息损失悖论一直是最基本的问题之一[1,2]。对于蒸发的黑洞,已经表明,相对于观察者的时间,辐射单调的熵增加。但是,单一进化的过程要求在蒸发过程结束时这种熵消失。为此而言。在物质崩溃之前,全曲片上的量子场状态是纯净的,在黑洞蒸发后应保持相同。此外,页面曲线[3,4]描绘了辐射熵的时间依赖性。页面曲线有效地通过引入称为页面时间t p的时间尺度来解决信息丢失悖论的问题。根据页面曲线的信息损失悖论可以理解如下。霍金辐射的细粒度熵是由黑洞外部区域R上的量子场的von Neumann熵确定的。现在假设完整的cauchy片上的状态为纯状态,辐射s(r)= s(r c)的细粒熵,其中s(r c)可以理解为纤维粒的熵