选择后的过程可用于研究量子多体系统和量子场理论(QFTS)的动态特性。例如,培训测量的非单身动态提供了一种用于控制多体系统的新工具,从而产生了测量引起的相变[1,2]。选择后在黑洞最终提案中也起着关键作用[3],为黑洞信息拼图提供了可能的解决方案。尽管由于鹰辐射而引起的蒸发过程[4,5]可能会将初始纯状态变成混合状态[6],但最终状态在施加在空间外奇异性上的状态下仍然是纯净的,请参见。图。1。但是,已经指出,最终状态必须非常特别才能保留信息[7]。在[8,9]中讨论了最终状态建议与平滑视野的存在之间的张力,最近在[10]中提出了解决方案。另一方面,黑洞蒸发过程中的单位性要求霍金辐射和黑洞之间的量子纠缠量
投票是民主的基石,需要确保安全,透明度和选民匿名的系统。传统投票方法通常面临诸如篡改和缺乏机密性之类的挑战,促使人们需要安全的数字解决方案。本文使用椭圆曲线密码学(ECC)提出了一个隐私的投票系统,以解决这些问题[1]。ECC是一种有效的加密技术,可提供较小的钥匙尺寸的强度安全性,使其非常适合可扩展系统。它确保了安全的沟通并保护选民身份[2]。将ECC与区块链技术整合在一起,进一步通过分散的信任和不可变化的存储提高了数据完整性和透明度,如所示。同构加密用于启用加密票的计算,以确保选民在Tallying期间的私密性[3]。通过将ECC,区块链和同质加密结合起来,拟议的系统解决了电子投票中的关键问题,例如数据操纵和双重投票,同时保持选民的保密性和可信度[4]。2。文学评论
对于具有高压轨迹的微电子设备,可在真空环境中起作用,重要的是要知道真正的损坏电压对压力的影响以避免发生故障。Paschen定律在压力和距离变化时是众所周知的崩溃电压行为方程。它的常见数学表达[1]是在两个平行导电板的均匀字段假设下写的。最近有一些作品,其中一些特殊导体配置的不均匀的电晶体以及在真空中的PCB痕迹考虑的,压力高达10 -1 mbar [2]。也有关于均匀场,非常低的距离(10 UM及更近)和低真空的帕申曲线行为异常的报告[3,4]。在这里,我们介绍了对一种不均匀领域的paschen效应的研究,这是针对一种常见的PCB痕量构造的,距离距离为100 um,低真空度最高为10 -4 TORR。在本文的第2节中,我们提供了简化的理论估计,该理论估计使用Townsend标准对最小崩溃电压。在第3节中,描述了测量压力的崩溃电压依赖性的实验设置,并在第4节中提出了真空相机中PCB迹线的实验研究结果。
“用于设置每个ICAP需求曲线的高峰工厂的成本和收入,应在可用容量等于(a)(a)最低安装能力需求的总和的条件下确定,以及(b)峰值工厂的容量等于在定期审查中指定的MW数量,并在定期审查中指定了所有成本和均等的级别,以确定所有级别的级别(以下情况下)。 (添加了强调)
1 天体物理学小组,基尔大学,基尔,斯塔德郡 ST5 5BG,英国 2 马克斯普朗克研究所 Sonnensystemforschung,Justus-von-Liebig-Weg 3,D-37077 哥廷根,德国 3 波兰科学院尼古拉斯·哥白尼天文中心,ul。 Rabia´nska 8, PL-87-100 Toru´n, 波兰 4 鲁汶天主教大学恒星学研究所,Celestijnenlaan 200D,B-3001 Leuven,比利时 5 圣地亚哥州立大学天文系,5500 Campanile Drive,San Diego,CA 92182-1221,美国 6 维拉诺瓦大学天体物理和行星科学系,800 Lancaster Avenue,Villanova,PA 19085,美国 7 哈佛和史密森天体物理中心,60 Garden Street,Cambridge,MA 02138,美国 8 伯明翰大学物理与天文学院,伯明翰 B15 2TT,英国 9 奥胡斯大学物理与天文系恒星天体物理中心 (SAC),Ny Munkegade 120,DK-8000丹麦奥胡斯 C
2. 虽然氢燃料在理论上可以作为潜在的峰值电厂设计,但本研究的评估发现,与 2025-2029 DCR 的其他技术选项相比,从 2040 年开始改装简单循环涡轮机以使用氢燃料并在现场储存氢燃料并不经济。1898 & Co. 和 AG 建议继续监测能够符合《气候领导和社区保护法案》(CLCPA)2040 年零排放能源供应要求的技术,以便在未来的重置中加以考虑。
摘要 — 可再生资源的大量渗透导致净负荷快速变化,从而产生了典型的“鸭子曲线”。由此产生的大容量系统资源的爬升需求是一项运营挑战。为了解决这个问题,我们提出了一个分布式优化框架,在这个框架中,位于配电网中的分布式资源被协调起来,为大容量系统提供支持。我们使用电流注入 (CI) 方法对多相不平衡配电网的功率流进行建模,该方法利用基于 McCormick 包络的凸松弛来呈现线性模型。然后,我们使用加速近端原子协调 (PAC) 来解决这个 CI-OPF,该协调采用 Nesterov 型加速,称为 NST-PAC。我们以加利福尼亚州旧金山为例,使用改进的 IEEE-34 节点网络,在太阳能光伏、灵活负载和电池单元的高渗透率下,将我们的分布式方法与本地方法进行了评估。我们的分布式方法将大容量系统发电机的爬升要求降低了多达 23%。索引词 — 配电网、分布式优化、储能
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
注意:所有美元价值都是名义的(即升级之前)。初步净EAS结果和2024-2025原始净EAS结果均基于2020年9月1日至2023年8月31日的数据。值不反映2.04美元/千瓦的电压支持服务(VSS)收入加法器。2024-2025原始净EAS结果(年度更新)先前在11/17/2023 ICAPWG会议上介绍。