摘要 炎症是引起干眼病(DED)眼表损害的潜在因素之一,越来越多的证据表明嘌呤能A 1 、A 2A 、A 3 、P2X4、P2X7、P2Y 1 、P2Y 2 和P2Y 4 受体在DED炎症调控中起重要作用:A 1 腺苷受体(A 1R )是全身促炎因子;A 2AR参与激活MAPK/NF-kB通路;A 3R结合腺苷酸环化酶的抑制和丝裂原活化蛋白激酶(MAPK)通路的调控导致转录调控;P2X4促进受体相关的促炎细胞因子和炎性小泡的激活; P2X7促进炎症小体活化,促炎细胞因子IL-1β和IL-18的释放;P2Y受体影响磷脂酶C(PLC)/IP3/Ca 2+信号通路和黏蛋白的分泌,提示嘌呤受体有望成为未来控制DED炎症的靶点。
干眼症 (DED) 是一种多因素疾病,常表现为眼部不适、视觉障碍和泪膜不稳定等症状。还可能会损伤眼表。1 由于 DED 具有多因素性,因此对临床医生的诊断具有挑战性。它与多种潜在致病因素和非特异性症状有关。有些患者甚至可能没有症状。然而,无论症状如何,识别和治疗都很重要,因为如果不及时治疗,该疾病会导致眼表损伤、杯状细胞丢失和粘蛋白表达紊乱,最终导致炎症介质释放到泪液中。1 泪液渗透压和泪液不稳定是公认的 DED 主要机制。特别是,高于稳态范围的泪液渗透压水平被认为是驱动免疫病理级联的致病因素。测量泪液渗透压已成为客观定量识别 DED 并监测其进展和治疗反应的重要临床工具。近年来,市场上出现了 2 种采用新技术的设备,可简化泪液渗透压的现场测量。这些设备正在取代蒸气压渗透计,后者虽然可以提供准确、特定和灵敏的测量结果,但也需要大量时间和多个步骤才能获得读数。多步骤过程增加了
摘要 钛合金定向能量沉积 (DED) 因其在自由成型和再制造方面的灵活性而成为一种快速发展的技术。然而,沉积过程中凝固微观组织的不确定性限制了其发展。本文提出了一种人工神经网络 (ANN) 来研究晶界倾斜角与三个致病因素(即热梯度、晶体取向和马兰戈尼效应)之间的关系。在田口实验设计下进行了一系列线材 DED、光学显微镜 (OM) 和电子背散射衍射 (EBSD) 实验,以收集 ANN 的训练和测试数据。与传统的微观结构模拟方法相比,本文开发的策略和 ANN 模型被证明是一种描述 DED 制备 Ti6Al4V 中竞争性晶粒生长行为的有效方法。它们可用于实现定量微观结构模拟,并扩展到其他多晶材料凝固过程。
摘要:微观结构直接影响了材料的随后机械性能。在制造的零件中,详细过程设置了微观结构特征,例如相类型或缺陷和谷物的特征。在这一过程中,本文旨在了解TI6AL4V合金的定向能量沉积(DED)制造过程中微结构的演变。它阐明了时间相变形块(TTB)的新概念。对不同块中温度历史的这种创新分割使我们能够将通过3D有限元(FE)热模型计算出的热历史以及从DED过程获得的多层TI6AL4V合金的最终微结构。作为第一个步骤,对触发TI6AL4V合金的固相变换的机制进行了对技术的审查。这表明当前动力学模型不足以预测DED期间的微结构演变,因为报告了多个值以进行转换开始温度。其次,开发了一个3D有限元(Fe)热模拟,并使用DED过程对Ti6Al4V部分代表TI6AL4V部分进行验证。建筑策略促进了热量的积累,并且该部分表现出硬度以及性质和相数的异质性。在生成的热场历史中,选择了代表不同微观疗法的三个兴趣点(POI)。对热曲线的深入分析可以根据其扩散或位移机制来区分固相变换。与最新的状态相结合,该分析既突出了转换临界点的可变特征,以及根据温度值以及加热或冷却速率而激活的不同相变机制。通过对DED过程中每个POI的微观结构的演变进行彻底的定性描述来实现此方法的验证。因此,新的TTB概念被证明提供了基于Fe温度领域的最终微观结构的流程基础。
I. 概述 根据该法案,经认证的合格企业可因在内布拉斯加州生产可再生化学品(定义见《内布拉斯加州修订法令》第 77-6603(7) 条)而获得可退还的税收抵免。税收抵免的计算方式法定为“等于 7.5 美分乘以合格企业每年在该州生产的超过合格企业资格前生产门槛的可再生化学品磅数的乘积”,每家合格企业每年的抵免上限为 150 万美元。(《内布拉斯加州修订法令》第 77-6607(1) 条)。DED 可批准 2022 和 2023 日历年最高 300 万美元的税收抵免,以及 2024 日历年及以后每年最高 600 万美元的税收抵免。(《内布拉斯加州修订法令》第 77-6605 条)。要根据该法案获得税收抵免,企业必须向 DED 申请认证为合格企业。要被认证为合格企业,申请人必须:(i) 在申请税收抵免的日历年内,在内布拉斯加州生产至少 100 万磅可再生化学品,(ii) 实际位于内布拉斯加州,(iii) 在 2021 年 1 月 1 日或之后在内布拉斯加州组织、扩张或落户,以及 (iv) 遵守根据该法案达成的所有协议以及 DED 或 DOR 管理的任何其他税收抵免或计划。如果申请人被 DED 认证为有资格获得税收抵免的企业,则该申请人将与 DED 签订协议,该协议将规定该日历年内合格企业可获得的最高税收抵免金额。税收抵免的发放取决于 DOR 随后对合格企业在相关期间的可再生化学品生产水平的核实。
定向能量沉积 (DED) 是一种很有前途的增材制造修复技术;然而,DED 易在薄壁部分产生表面波纹(驼峰),这会增加残余应力和裂纹敏感性,并降低疲劳性能。目前,由于缺乏具有高时空分辨率的操作监测方法,DED 中的裂纹形成机制尚不十分清楚。在这里,我们使用在线相干成像 (ICI) 来光学监测表面拓扑并原位检测开裂,结合同步加速器 X 射线成像来观察表面下裂纹的愈合和扩展。ICI 首次实现离轴对准(相对于激光器 24 ◦),从而能够集成到 DED 机器中,而无需更改激光传输光学系统。我们使用单元件 MEMS 扫描仪和定制校准板,实现了 ICI 测量值和激光束位置之间的横向(< 10 µ m)和深度(< 3 µ m)精确配准。 ICI 表面拓扑结构通过相应的射线照片(相关性 > 0.93)进行验证,直接跟踪表面粗糙度和波纹度。我们故意在镍基高温合金 CM247LC 的薄壁结构中植入隆起,在表面凹陷处局部诱发开裂。使用 ICI 现场观察到小至 7 µ m 的裂纹开口,包括亚表面信号。通过量化隆起和开裂,我们证明 ICI 是一种可行的现场裂纹检测工具。
3.2.4.1 讨论 — 适用于 DED 的电弧工艺表面上基于气体保护工艺,即 GTA、PA、PTA 和 GMA 及其变体。3.2.5 建成状态,adj— 参见建成状态、ISO 52900 和 3.3。3.2.6 构建平台,n— 参见构建平台。ISO/ASTM 52900 3.2.6.1 讨论 — 在 ISO/ASTM 52900 中,机器的构建平台被定义为提供一个表面的底座,零件的构建在该表面之上,并在整个构建过程中受到支撑。在 DED 中,构建平台也可以是需要修复的组件,也可以是非平面的。3.2.7 捕获效率,n— 从沉积头喷出的粉末中融入构建结构的比例。通常以百分比表示。 3.2.8 载气,名词——通常为惰性气体,用于将粉末从沉积头运送到熔池,在某些系统中也用于辅助将粉末从储存系统运送到沉积头。 3.2.9 铸件,名词——一根金属线,松散地抛在地板上的一段金属线所形成的圆的直径。 3.2.10 包层,名词——参见包层,AWS A3.0/A3.0M。 3.2.11 横流,名词——通常为惰性气体,方向垂直于受保护镜头的光轴。 3.2.12 循环,名词——单个循环,其中一个或多个组件、特征或修理在机器的构建空间中分层构建。 ISO/ASTM 52900 3.2.12.1 讨论——DED 非常适合修理、特征添加和再制造应用。在本指南中,无论是构建完整部件、其一部分还是修复,术语“DED 构建循环”和“DED 沉积循环”的使用都是同义词。 3.2.13 缺陷,名词——参见缺陷,术语 E1316。 3.2.14 沉积头,名词——向熔池输送能量和原料的装置。 3.2.15 沉积速率,名词——参见沉积速率,AWS A3.0/A3.0M。 3.2.16 定向能量沉积 (DED),名词——参见 ISO/ASTM 52900 和 3.3。 3.2.17 进料,名词——将材料(线材或粉末形式)输送到熔池的机制。 3.2.18 填充金属,名词——参见填充金属,AWS A3.0/A3.0M。 3.2.19 裂纹,名词——参见裂纹,术语 E1316。 3.2.20 焦斑,名词——参见焦斑,AWS A3.0/A3.0M。 3.2.21 功能梯度材料,名词——在成分或结构(或二者)上随空间变化的沉积材料,导致材料性质的相应变化。 3.2.22 气体金属电弧(GMA),名词——参见气体金属电弧焊(GMAW),AWS A3.0/A3.0M。 3.2.22.1 讨论——AWS 定义中的“焊接”一词表示两块或多块材料的连接。由于 DED 不是这种情况,因此删除了“焊接”一词。其余术语描述电弧物理学。
使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
由于沉积区域和基材的快速加热和冷却循环,定向能量沉积 (DED) 工艺沉积区域附近会出现复杂的残余应力分布。残余应力会导致沉积区域附近出现缺陷和过早失效。人们已经对多种热处理技术进行了广泛的研究,并将其应用于通过 DED 工艺沉积的部件,以释放残余应力。本研究旨在利用热机械分析研究通过 DED 和淬火工艺制备的试样的残余应力特性。采用耦合热机械分析技术预测淬火步骤后沉积区域附近的残余应力分布。沉积和冷却措施的有限元 (FE) 分析结果表明,在弹性恢复完成后,沉积区域附近的残余应力显著增加。加热和淬火阶段的 FE 分析结果进一步表明,在淬火初始阶段,沉积区域附近的残余应力显著增加。此外,观察发现,无论沉积材料如何,淬火残余应力均小于弹性恢复后的残余应力。
金属增材制造 (AM),例如激光直接能量沉积 (DED),因其能够为各种工业应用制造近净成形的复杂部件而越来越受欢迎。然而,DED 过程中的几何控制,尤其是在急转弯处的几何控制仍然是一项艰巨的任务。为了实现几何控制,几何估计以确定工艺参数和几何属性之间的关系至关重要。在本研究中,使用激光线扫描仪、视觉相机和域自适应神经网络 (DaNN) 为 DED 开发了一种实时层高估计技术。重点放在多层沉积期间尖角处的层高估计。首先,使用激光线扫描仪收集多层直线沉积数据并构建初始层高估计模型。然后,为了有效地实现角落沉积期间的层高估计,使用多层直线沉积数据和构建的初始模型建立了 DaNN 模型。使用视觉相机测量角落处的实际移动速度并将其作为输入特征之一输入到 DaNN 模型中。最后,在线更新 DaNN 模型以进一步提高角落沉积期间的估计精度。所提出的技术已通过DED实验验证,结果表明,当在不同角度的角落沉积多层平均高度为 250 µ m 的层时,可以在 0.018 秒内估算出层高,平均精度为 25.7 µ m。