GRCop 是由铜、铬和铌构成的合金系列,由 NASA 为高热流应用而开发。GRCop 合金是专门为满足通道冷却主燃烧室的要求而配制的,可在高热流环境中重复使用。GRCop-84 是 NASA 开发计划下使用增材制造技术开发的。为了进一步提高热导率,同时保持材料强度特性,合金元素的百分比减少了一半,并开发了 GRCop-42。近年来,NASA 已成功使用激光粉末床熔合 (L-PBF) 工艺增材制造 GRCop-42。发现 L-PBF 工艺产生的材料性能与传统挤压 GRCop-42 相当。该工艺的好处包括制造复杂的内部冷却通道以及缩短制造时间。但是,使用该工艺也存在一些很大的缺点。粉末床工艺的性质施加了严格的体积限制以及所需的过多材料库存。定向能量沉积 (DED) 工艺解决了这些限制,同时也加快了制造过程。由于关于 DED 如何与 GRCop-42 配合使用的数据很少,因此对其机械性能进行了调查。更具体地说,使用吹粉定向能量沉积 (BPD) 将材料性能与 L-PBF 制造的 GRCop-42 进行比较。发现 DED 制造的材料孔隙率小于 0.1%。拉伸试验得出结论,DED 制造的 GRCop-42 在室温下具有较低的拉伸强度。结果表明,该工艺能够生产出完全致密的部件,能够满足机械性能
由于严格的环境法规,使用增材制造工艺修复和再制造机械零件引起了广泛关注。定向能量沉积 (DED) 被广泛用于改造机械零件。在本研究中,进行了有限元分析 (FEA),以研究基材相和倾斜角对通过 DED 沉积的哈氏合金 X 区域附近传热特性的影响。设计了考虑焊珠尺寸和图案间距的 FE 模型。采用平面高斯分布的体积热源模型作为 DED 的热通量模型。基材和沉积粉末分别为 S45C 结构钢和哈氏合金 X。在进行 FEA 时考虑了温度相关的热性能。研究了基材相和倾斜角对沉积区域附近温度分布和热影响区 (HAZ) 深度的影响。此外,还研究了沉积路径对 HAZ 深度的影响。分析结果用于确定合适的基底相位和倾斜角度以及适当的沉积路径。
随着使用计算和数据密集型方法探索多主元合金 (MPEA) 的努力不断增加,预测材料特性的实验实现和验证需要对这些合金进行高通量和组合合成。虽然增材制造 (AM) 已成为解决这些挑战和通过零件制造进行快速原型设计的主要途径,但开发和理解工艺-结构-性能相关性的广泛研究迫在眉睫。特别是,基于定向能量沉积 (DED) 的 MPEA AM 前景广阔,因为功能分级组件制造以及表面熔覆的成分变化可能无限。我们分析了 MPEA 的 DED 的最新努力、各种过渡和难熔元素的激光金属沉积过程中的微观结构演变,并评估了各种加工参数对材料相和性能的影响。我们的努力表明,开发用于工艺参数选择的稳健预测方法和修改合成机制对于使 DED 平台能够重复生产无缺陷、稳定和设计 MPEA 至关重要。
摘要:热机械特性高度依赖于定向能量沉积 (DED) 工艺的沉积策略,包括沉积路径、道间时间、沉积体积等,以及基材的预热条件。本文旨在通过有限元分析 (FEA) 研究沉积策略和预热温度对采用 DED 工艺沉积在 AISI 1045 基材上的 Inconel 718 高温合金热机械特性的影响。针对不同的沉积策略和预热温度建立了 FE 模型来研究热机械行为。采用 16 种沉积策略进行 FEA。通过比较实验和 FEA 的温度历史来估算热沉系数,以获得合适的 FE 模型。研究了沉积策略对设计的小体积沉积模型中残余应力分布的影响,以确定可行的沉积策略。此外,还研究了沉积策略和预热温度对大体积沉积设计部件残余应力分布的影响,以预测合适的DED头沉积策略和合适的基体预热温度。
在本研究中,我们研究了使用直接能量沉积 (DED) 工艺修复的 SKD61 的特性和机械性能。修复产品的机械性能可能因 DED 工艺中使用的基材和粉末而异。为了准备对受损部件进行 DED 修复,我们使用两种不同的粉末 (H13 和 P21) 进行了实验。实验结果表明,两种粉末均在沉积区和基材之间的表面或界面上无缺陷地沉积。硬度测量表明,修复后的 H13 样品的修复区域比基材的硬度更高,而修复后的 P21 样品的热影响区 (HAZ) 硬度急剧增加。此外,拉伸试验结果表明,修复后的 H13 样品的拉伸强度和伸长率低于基材,而修复后的 P21 样品的拉伸强度和屈服强度高于修复后的 H13 样品,伸长率也更高。对于修复-H13,确认由于修复部分和基材之间的硬度差异较大而出现界面裂纹。
•清洁室环境中的纳米级装置制造•电子束光刻(EBL)和光刻图•低温传输测量•真空系统,薄膜沉积(热和电子束蒸发),•半导体材料/设备的电气表征(由I-V和C-V概率)(I-V和C-V概率)(I-V和CRAM)•SEMRANT和SERTARCER•SEMRASS(SEM),X,X,X,X,X,X,X,x,x,x,x,x,x,x,x,x,x,x,x,x,x,即使用空间电荷光谱(如DLTS)进行表征•使用能量离子修改材料性能•软件包:Labview,起源研究指南博士学位:2•基于离子辐照硅的当前运输的研究研究指导,基于离子辐射的Schottky屏障结构(2021)(2021)的Hemant Chaurasia•基于Nanowire的Hemant Chaurasia•NANOWIRE NOMBATIRE ELECTORITE ELLECERITE DED ELLELYTE DED ELLETRERN DED•2022222222222222221222222122222222年2月202位。进度:2
定向能量沉积 (DED) 是一种增材制造技术,可以快速生产和修复具有灵活几何形状的金属零件。DED 期间热和材料传输的复杂性会产生不必要的微观结构异质性,从而导致零件性能分散。在这里,我们研究了使用不同沉积速率通过粉末吹制 DED 生产的 Inconel 718 在不同长度尺度上的微观结构变化。我们量化了零件内晶粒结构、纹理、成分和凝固结构的空间趋势,并将它们与硬度、屈服强度和杨氏模量的变化相关联,以突出凝固过程中热环境的影响。我们发现,使用高沉积速率时采用的高能量输入有利于沿构建和横向方向产生显着的微观结构异质性,这源于所使用的沉积策略产生的不对称冷却速率。我们还发现,在 Inconel 718 上采用的标准热处理不适合使微观结构均质化。这些结果对于开发工业相关的增材制造零件的构建速率策略具有重要意义。© 2021 作者。由 Elsevier BV CC_BY_NC_ND_4.0 出版
快速指南kurzanleitung指南dedémarrageapapide juption underucciones resumidasinstruçriesresumidas beknopte gebuiksaanwijzingkrótkainstrukcjaobsługisnabbuid snabbuid
废料减少 70% ▪ DED、热处理和部分加工 ▪ 通过近净成型打印减少 70% 以上的废料量