- 促进实施与气候变化影响相关的人口流动有关的 WIM 职能:增强对综合风险管理方法的认识和理解;加强对话、协调、一致性和协同作用;加强行动和支持,包括资金、技术和能力建设; - 最大限度地发挥协同作用,并利用 TFD 作为一个召集机构的附加值,该机构能够很好地召集广泛的利益相关者,以寻求解决气候变化和流动性关系的问题。
摘要:受自然发生的调节机制的启发,这种机制允许在基因表达和生物途径中实现具有可编程延迟的复杂时间脉冲特征,我们在此展示了一种在基于 DNA 的链置换反应 (SDR) 中实现时间编程脉冲输出信号的策略。为了实现这一点,我们合理设计了输入链,一旦与目标双链结合,就可以逐渐降解,从而产生脉冲输出信号。我们还设计了阻断链,以抑制链置换并确定产生脉冲反应的时间。我们表明,通过控制阻断链和输入链的降解率,我们可以在 10 小时的范围内精细地控制延迟脉冲输出。我们还证明,通过利用输入链和阻断链的降解反应的特异性,可以在同一溶液中正交延迟两种不同的脉冲反应。最后,我们在此展示了这种延迟脉冲 SDR 的两种可能应用:DNA 纳米结构的时间编程脉冲装饰以及基于 DNA 的图案的顺序出现和自擦除形成。
toehold介导的链位移的单分子力光谱Andreas Walbrun 1,*,Tianhe Wang 2,*,Michael Matthies 2,Petršulc2,3,Friedrich C. Simmel 2,+ Matthias Rief,Matthias Rief 1慕尼黑技术大学生物科学系综合蛋白质科学中心(CPA),Ernst-Otto-Fischer-STR。8,85748德国Garching。 电子邮件:matthias.rief@mytum.de 2。 慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。 电子邮件:simmel@tum.de 3。 亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。8,85748德国Garching。电子邮件:matthias.rief@mytum.de 2。慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。电子邮件:simmel@tum.de 3。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。通过探测toehold结构的发夹的末端,我们可以通过微秒和纳米分辨率实时触发和观察TMSD。使用微流体测定法,我们将发夹暴露于触发链的溶液中,我们发现在负载下,TMSD的进行非常迅速,单步时间为1 µs。将不匹配引入入侵者序列使我们能够调节稳定性,以使入侵和重新染色在均衡中也发生,即使在负载下也是如此。这使我们能够在单个分子上研究数千个入侵/入侵事件,并分析入侵过程的动力学。将我们的发现推送到零载荷,我们发现DNA入侵DNA的单步速度比入侵RNA快的速度快四倍。我们的结果揭示了序列效应对TMSD过程的重要性,并且对于核酸纳米技术和合成生物学的广泛应用至关重要。关键字:肋骨调节器,脚趾介导的链位移,分支迁移,单分子力光谱
* Kienzler,Hannian Kienzler,Colenic Costas,Close,Irant,Mushfiq,Kiridk Muridahan。 。。 (握)。 ASA 2022(一个空心和田间天数。该研究已从BRAC大学(2019-028-ER)注册。我们还要感谢BRAC教育开发学院的Erum Marium和Sakila Yesmin,以及罗兴亚难民营的BRAC野外工作者,为整个项目提供了广泛的支持和协作。该项目获得了乐高基金会和门廊基金会的干预资金,并提供了开放社会基金会提供的研究和评估资金。†发展经济与可持续性中心(CDE)和澳大利亚莫纳什大学经济学系; J-pal。电子邮件:asadul.islam@monash.edu
当今民用运输飞机的高升力系统由使用阀控固定排量液压马达的动力控制单元 (PCU) 驱动。图 9 显示了带有 PCU 的传统高升力传动系统的典型后缘(襟翼)。由于可靠性原因,PCU 由两个独立的液压执行回路驱动。两个液压马达的速度由差速齿轮 (DG) 相加。如果单个液压系统发生故障,高升力系统可以半速运行。整个传动系统的位置通过释放压力制动器 (POB) 来设置。使用 VDHM 驱动的 PCU 可实现平稳的启动和定位序列。此外,它还可以对高升力系统进行稳定的位置控制。(1)、(2)
摘要。本文描述了农业机器人,机器人操纵器的类型以及测量其旋转机制时出现的挑战。出现其出现的原因,在此过程中发生的物理和技术现象。分析了其测量所需的不同操作模式的测量换能器,并提出了这些传感器的主要要求。此外,本文提出了传感器,用于控制节能,智能机器人的旋转部分,用于采摘西红柿。这项研究的主要目标之一是衡量和控制用于农业中用于开发现代农业,节省能源和收获优质产品的农业的旋转部分的变化。这项研究的新颖性是机器人操纵器的旋转部分受到产品类型及其大小的控制。
2-4 :运行开始 ................................................................................................ 2-18 运行开始前 ................................................................................................ 2-18 开始运行 ........................................................................................................ 2-18 达到稳定运行状态时 ................................................................................ 2-18 2-5 :运行停止 ........................................................................................................ 2-19 2-6 :使用 SFC 运行 ............................................................................................. 2-19 按键操作原理 ............................................................................................. 2-19 与屏幕的交互 ............................................................................................. 2-20 输入的修正 ............................................................................................. 2-20 SFC 键盘 ............................................................................................. 2-21 按键输入的基本操作 ............................................................................................. 2-22 SFC 按键功能 ............................................................................................. 2-23 绿色按键功能 ............................................................................................. 2-24 橙色按键功能 .............................................................................
保留所有权利。未经许可不得重复使用。永久。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 许可,可以在此版本中显示预印本。版权所有者于 2025 年 1 月 28 日发布此版本。;https://doi.org/10.1101/2025.01.27.25320727 doi: medRxiv preprint
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 10 月 28 日发布。;https://doi.org/10.1101/2022.12.28.522113 doi:bioRxiv 预印本