能够监视锂离子电池(LIB)的热行为的能力,是选择性性能并确保安全操作的必要前提。但是,传统的点测量(热电偶)在准确表征LIB行为方面面临着挑战,尤其是定义热点以及热梯度的大小和方向。为了解决这些问题,已经采用了基于光频域反射计(OFDR)分布式 - 光纤维传感器来量化圆柱形21700 LIB内的热量产生。实现了光学传感器内的3 mm空间分辨率。光纤已在细胞表面周围缠绕,以超过1300个独特的测量位置;分布在圆周周围,沿Lib轴向分布。分布式测量结果表明,在1.5C放电期间,最大热差可以达到8.37℃,而点状传感器的热差为4.31℃。虽然沿细胞轴向长度的温度梯度首次被充分理解,但该研究首次量化了沿细胞周长的温度变化。全球热图像突出显示热量产生是在正电流标签周围积累的,这意味着在传统表征实验和电池管理系统(BMS)内定义传感器的位置时,需要对内部LIB结构的基本知识。
制造。在竞争日益激烈的经济中,增材制造可以帮助企业保持敏捷,创新和可持续性。考虑到生产和运输引起的碳排放,本文介绍了多站点添加剂制造(AM)机器调度问题。建立了一个混合企业线性编程模型,旨在优化两个独立的目标,以解决多个无关的AM机器环境中的经济和环境可持续性。前者是由生产,运输,设置和迟到的罚款造成的总成本,后者是由生产和运输引起的碳排放总量。该模型在Python中编码,并通过Gurobi Optimizer求解。提供了一个数值示例来表示问题的基本特征,并显示了提出的框架的必要性。针对两种主要情况下的600和1800S时间限制进行了全面的计算研究,结果已详细阐述。本文介绍了考虑由生产和运输引起的经济和环境可持续性的概念,提出了第一个数学模型,并通过一项全面的实验研究来衡量其绩效。
量子密码学现在被认为是一种有前途的技术,因为它承诺了无条件安全。近年来,正在为实现安全网络的量子密钥分布(QKD)协议的实验实现进行严格的工作。在各种QKD协议中,连贯的一种方式和差异相位移位QKD协议由于使用当前可用技术的实验实现而进行了快速的实验发展。在这项工作中,我们在电信波长处实验实现了基于光纤的相干和差异相移QKD方案。两个协议属于称为分布式相位参考协议的一类协议,其中使用弱相干脉冲来编码信息。此外,我们已经分析了有关不同参数的关键速率,例如距离,披露速率,压缩比和检测器的时间。
Oracle设计了主权云解决方案,可为云服务提供更多的敏感数据和应用程序。一个例子是Oracle EU Sovereign Cloud,自2023年以来可用。Oracle Eu Sovereign Cloud是故意建立和旨在满足欧盟的关键监管要求的。这些数据中心以两种方式分开:它们位于物理分离的建筑物中,与Oracle的公共云区域不同。运营也分开:这些数据中心由欧盟居民经营,硬件,资产和物理数据中心租赁均由Oracle Eu eu eu euign sovereign云法律实体所有。Oracle承诺,Oracle Eu Sovereign Cloud中的数据受欧盟数据隐私和居住要求的政策管辖。Oracle的主权云提供了与公共云地区相同的体验;所有服务都可以使用,并且适用公共云的一致定价。
在电池热管理系统 (BTMS) 的设计和分析中,瞬态效应通常被排除在外。然而,电动汽车承受着巨大的动态载荷,导致电池瞬态发热,而这种现象在稳定状态下是不会出现的。为了评估这种影响的重要性,本文基于在稳定条件下运行良好的现有冷却系统,对电池冷却过程进行了时间相关分析。为了模拟现实情况,从不同的标准驾驶循环中推断出电池电量消耗的时间变化。然后利用计算流体动力学预测 900 秒内电池模块内的冷却液和电池温度。结果表明,对于空气冷却,电池温度可能会超过安全限值。例如,在高性能驾驶循环中,200 秒后,电池温度就会超过临界值 308 K。尽管如此,当使用液体冷却电池模块时,温度始终在安全范围内。此外,在流速为 1.230 g/s 的高性能循环中,电池温度降至临界阈值以下,达到 304 K。此外,为了在 NYCC 交通和 US06 驾驶循环期间将电池温度保持在临界阈值以下,需要最大冷却液压力入口为 1.52 和 0.848 g/s,分别相当于 100 Pa 和 50 Pa。还讨论了在驾驶循环期间车辆加速引起的电池模块上努塞尔特数分布的时间变化。结论是,稳定状态的假设可能会导致 BTMS 的设计不理想。
本文考虑了一种新型的多代理线性随机近似算法,该算法是由多维亚噪声和一般共识型相互作用驱动的,其中每个剂的局部随机近似过程都取决于其邻居的信息。用定向的图形描述了代理之间的互连结构。当通过双随机矩阵(至少在预期中)描述了基于共识的随机近似算法的收敛性,而当互连矩阵简单地是随机的情况下,对这种情况的了解较少。对于任何相关相互作用矩阵的均匀连接的图形序列,该论文在均方误差上得出有限的时间界限,定义为算法偏离相关普通微分方程的唯一平衡点的偏差。对于互连矩阵随机的情况,在没有通信的情况下,平衡点可以是所有局部平衡的任何未指定的凸组合。都考虑了恒定和随时间变化的台阶尺寸的情况。分布式的时间差学习将作为说明性应用。©2023 Elsevier Ltd.保留所有权利。在要求凸组合必须是直接平均值并且任何一对邻近代理之间的互动的情况下,可能是单向的,因此不能以分布的方式实现双重随机矩阵,本文提出了按下的Push-type分布式近似算法,并为时间限制的范围分析范围,以实现其范围,并为时间限制范围,以实现其范围,以实现时间表,以实现时间表的范围,以实现时间范围的范围,以实现时间范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现范围的范围,以实现时间范围。带有随机矩阵的算法,并开发了Push-sum算法的新型特性。
图 1:多区域小鼠皮质模型的解剖基础。(A)。小鼠皮质区域的平面视图。图片改编自 (Harris et al. 2019)。(B)。每个大脑区域的标准化 PV 细胞分数,在小鼠大脑的 3d 表面上可视化。突出显示了五个区域:VISp、初级体感区、桶状场 (SSp-bfd)、初级运动 (MOp)、MOs 和 PL。(C)。每个皮质区域的 PV 细胞分数,按顺序排列。每个区域都属于五个模块之一,以彩色显示。(Harris et al. 2019)。(D)。3d 大脑表面上每个区域的层次位置。五个区域如图 (B) 所示突出显示,颜色代表层次位置。(E)。每个皮质区域的层次位置。对层级位置进行归一化,将VISp的层级位置设为0。如C)所示,颜色代表区域所属的模块。(F)。PV细胞分数与层级之间的相关性(皮尔逊相关系数r = − 0.35,p < 0.05)。
随着BESS规模的进一步扩大,分布式发电机(DG)之间会存在区域差异。此外,集中控制的通信网络复杂且成本高。这些限制制约了集中控制的发展。研究人员正在研究分散方法,以实现本地化控制并减少通信负担。何等[9]提出了逆功率因数控制,可以实现同步和功率共享。孙等[10]分析了功率传输特性,提出了一种fP/Q控制,可更广泛地应用于电阻-电容(RC)负载。针对并网模式,提出了一种完全分散的控制方法[11],该方法使用下垂方案控制来实现模块间的同步。然而,这些分散方法没有考虑到特性和功能,例如提供惯性控制以实现友好的电网连接并实现每个电池模块中的SOC平衡。为了实现这些目标,许多研究人员一直专注于电池特性及其在电网或可再生能源系统中的功能。
量子计算和区块链技术是现代计算中两个快速发展的领域。区块链提供去中心化的信任和安全性,而加密技术则确保数据的机密性和完整性。然而,传统加密算法容易受到量子计算机的暴力攻击,这对现有的区块链安全机制构成了威胁。本研究旨在构建一个模型并分析基于量子安全区块链的分布式控制系统和网络,特别关注工业工厂应用和网络化 DCS。该方法包括全面的文献综述,以确定抗量子算法、加密原语和区块链共识机制。这些组件构成了设计基于量子安全的区块链的分布式控制系统模型的基础。该模型结合了网络延迟、节点故障和量子攻击场景等关键因素,以评估各种条件下的系统可用性。使用代表性攻击场景进行模拟,以评估所提出的模型的性能和有效性。研究结果为量子安全区块链技术的新兴领域做出了贡献,揭示了可靠性挑战和机遇。此外,研究结果为在量子计算时代开发和部署安全可用的分布式控制系统和网络提供了实用指南。关键词:量子计算、区块链、量子安全、密码学、可靠性、可用性、暴力攻击
