多孔碳是超级电容器的重要电极材料。超级电容器面临的挑战之一是在不依赖伪电容的情况下提高其能量密度,伪电容基于快速氧化还原反应,而这往往会缩短器件寿命。一种可能的解决方案是在由最少堆叠的石墨烯壁组成的高表面碳材料中实现高总电容(C tot),其中包括亥姆霍兹电容(CH)和可能的量子电容(CQ)。在本文中,采用模板法合成具有大致相同孔结构(≈2100m2g-1,平均孔径≈7nm)但含氧官能团(0.3–6.7 wt.%)和氮掺杂剂(0.1–4.5 wt.%)浓度不同的3D介孔石墨烯。因此,系统地研究了杂原子官能团对有机电解质中C tot的影响,不包括孔结构的影响。结果表明,杂原子官能基决定 C tot ,导致循环伏安曲线呈矩形或蝴蝶形。氮官能基由于 CQ 增加而显著增强 C tot 。
Pawan Verma、Jabir Ubaid、Kartik M Varadarajan、Brian L Wardle 和 S. Kumar* Pawan Verma 博士,德克萨斯 A&M 大学 Artie McFerrin 化学工程系,德克萨斯州大学城,77840,美国。 Jabir Ubaid 博士、S. Kumar 教授 英国格拉斯哥大学詹姆斯·瓦特工程学院,格拉斯哥,G12 8LT 电子邮件*:s.kumar@eng.oxon.org Kartik M. Varadarajan 教授 美国马萨诸塞州波士顿麻省总医院骨科外科,邮编 02114 Brian L. Wardle 教授 美国马萨诸塞州剑桥麻省理工学院航空航天系,邮编 02139 美国马萨诸塞州剑桥麻省理工学院机械工程系,邮编 02139 关键词:熔融共混、增材制造、压阻、自感应、矫形支架 摘要
摘要: - 研究对Cu对Batio 3的结构过渡特性的影响进行了比较研究。对X = 0.1-0.3样品进行了研究,钛酸钡的化学公式为Batio 3。作为粉末,它是白色至灰色的,并具有钙钛矿结构。Batio 3使用最广泛的铁电材料。Batio 3在Curie温度下(T C〜120°C)具有化学公式ABO 3的钙钛矿结构(空间组R3C)。在室温下有四方结构。是铁电材料。铁电体是表现出类似于铁磁性磁性的电活动的结晶材料。由于它们自发的极化,即使在没有外场的情况下,这些材料也会显示出自发的极化,因此滞后作用。这发生在铁电材料中。直到给定温度,可以看到某种类型的行为。称为居里温度(TC)。此动作不超过此TC。到目前为止,我们已经通过合适的Cu掺杂组成(x = 0.1,0.2)来研究并表征了铁电BA 1-X Cu X Tio 3。RT-XRD表征产生了预期的特征峰,其中一些杂质峰表明系统中存在杂质阶段。拉曼峰在拉曼频谱中移动,导致了预期的拉曼模式,即300K时的a,e和混合模式a+e。关键字: - 居里温度,铁电,拉曼光谱,钙钛矿结构。
1纳米科学和纳米技术学院,西迪·阿卜杜拉(Sidi Abdellah)技术中心,阿尔及利亚阿尔及利亚2号阿尔及利亚2电子和电信系阿尔及利亚4应用自动化和工业诊断实验室(LAADI),科学技术学院,德杰尔福大学,阿尔及利亚17000; kouzouabdellah@ieee.org 5电气和电子工程系,伊斯坦布尔大学,伊斯坦布尔34398,土耳其6号,6高功率转换器系统(HLU),慕尼黑技术大学(TUM),80333慕尼黑,慕尼黑,慕尼黑,德国7号,能源过渡中心,上午70年中心。 jose.rodriguezp@uss.cl 8电气工程系,工程学院,阿西大学,阿西大学,埃及71516,埃及 *通信:khalil.tamersit@univ-guelma.dz或tamersit_khalil@halil@halil@hotmail.fr.); mohamed.abdelrahem@tum.de(M.A。)
I.引言激光器是一种使用光学放大的设备,该设备基于电磁辐射的刺激发射来发光。最初旨在通过刺激的辐射发射来代替光放大,名称为“ Laser”是一种词典。[1] [2] Hughes Research Laboratories的Theodore Maiman于1960年根据Charles H. Townes和Arthur Leonard Schawlow的理论研究建造了第一个激光。[3]一致的光被激光发出,使它们与其他光源区分开。通过空间连贯性使激光切割和光刻等应用成为可能,这使激光器可以聚焦到小区域。此外,它可以实现准直,从而使激光束在长距离上保持狭窄,并且在LIDAR(光检测和射程)和激光指针应用中很有用。由于激光的出色时间连贯性,可以通过激光发射高度狭窄的频谱。作为一种替代性,可以利用时间连贯性来创建具有广泛光谱的飞秒持续时间的超短光脉冲。激光器在切割和焊接材料,激光盘驱动器,激光打印机,条形码扫描仪,DNA测序仪器,光纤和自由空间光学通信,半导体芯片制造(光刻术(光刻),激光手术和皮肤处理以及切割和焊接供应中。它们也用于激光照明显示器,用于娱乐目的,在军事和执法设备中用于标记目标以及测量速度和范围。一些汽车前大灯已经使用了此类设备。[17]为了将荧光作为白光源激发,还使用了在蓝色至近紫外线范围内运行的半导体激光器,以代替发光二极管(LED)。这允许由于激光的辐射更大,并消除了LED经历的下垂,因此允许发射较小的区域。[4] [5] [6] [7]术语“通过刺激辐射的发射微波放大”(Maser)是指第一个通过刺激发射使用扩增的设备,并且它在微波频率上起作用。[8]最初称为光学masers,这些相同的光学设备后来被缩写为激光,在“光”一词被用缩写为“ Microwave”一词。[9]如今,所有这些设备(例如红外,紫外线,X射线和伽马射线激光器)的运行频率高于微波(约300 GHz及以后),称为激光器,而在Microwave或下无线电频率下运行的频率则称为激光器。[10] [11]在现场,lase是一种反向形成动词,意味着发出连贯的光,尤其是指引用激光的增益培养基时。[12]据说激光在运行时正在激光。[13]自然存在的相干排放也被称为masers或激光器,如原子激光和天体物理玛莎中。[14] [15]尽管该术语建议,但单独生成灯的激光实际上是光学振荡器,而不是光学放大器。[16]一个有趣的观察结果是,将这种现象称为“通过刺激放射的光放大”作为激光缩写为“光放大”。[15]由于原始的首字母缩写作为通用名词的广泛用法,现在也称为激光放大器。
在本研究中,我们利用傅里叶变换红外光谱 (FTIR) 和拉曼光谱法分析了硅 (n-Si) 样品及其含镝 (n-Si-Dy) 组合物的结构和光学特性。FTIR 光谱中的特征峰如 640 cm -1 (Si-H 模式) 和 1615 cm -1 (垂直拉伸模式) 被识别,表明了材料的结构特征。n-Si-Dy 光谱中在 516.71 cm -1 和 805 cm -1 处出现的额外峰表明镝对材料结构和缺陷的影响。对频率范围 (1950–2250 cm -1 ) 的检查进一步证实了与缺陷和与镝相互作用相关的局部振动模式。在 2110 cm -1 和 2124 cm -1 处发现了与 Dy-Dy 拉伸以及与硅相互作用相关的峰。拉曼光谱分析表明,在退火过程中形成了硅纳米晶体,XRD 结果证实了这一点。所获得的结果为了解镝对硅材料结构和性能的影响提供了重要的见解,这可能在光电子学和材料科学中得到应用。关键词:硅、镝、稀土元素、拉曼散射、扩散、热处理、温度 PACS:33.20.Ea,33.20.Fb
本文介绍了一种机器学习驱动的方法,用于预测稀土(Re)掺杂玻璃系统的光谱特性,重点是DY 3+离子。使用熔融液压技术合成0.25 PBO – 0.2 SIO 2 - (0.55-X)B 2 O 3 –x dy 2 O 3,及其密度,摩尔体积和judd-offelt(jo)参数(ω2,ω4,ω6)进行了实验确定。使用judd-芬芳理论来计算光谱参数,例如振荡器强度,辐射过渡概率和辐射寿命,用于DY 3+掺杂玻璃。此外,开发了一个随机森林(RF)回归模型,以根据玻璃的组成来预测这些参数。该模型显示高精度,在0.1下,R²(确定系数)值高于0.9和根平方误差(RMSE),从而验证了RF的使用以可靠地预测光学性质。结果表明,RF模型可以有效地模拟稀土(RE)载有玻璃的发光特性,从而大大减少了对实验测试的需求。这种方法提供了优化在激光器,光学放大器和温度传感器等应用中使用的光学材料设计的潜力。
本文档是公认的手稿版本的已发表作品,该作品以Nano Letters的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.nanolett.2C03427。
原子锁定硅中的位错,从而提高机械强度。[2,3] 用具有不同氧化态的各种元素掺杂硅的影响已得到充分证实。在碳材料中,通过化学取代可以带来物理和化学性质的显著变化。已知碳可以形成复合材料,并且可以掺杂各种材料,包括聚合物、金属氧化物、金属硫化物、金属氮化物、MXenes、金属有机骨架 (MOF) 等。[4–13] 然而,已经证明,用杂原子掺杂碳质材料可以改善各种性能,这是由于导电性增强、缺陷引入、孔隙率增强以及层间距离调整。近年来,一些报告强调了碳质材料在各种应用方面的进展,包括能源应用、传感应用和光伏应用。例如,2013 年,Thomas 和 Paraknowitsch 回顾了碳质材料的设计,并强调了它们在能源设备中的应用。[14] 根据该报告,S 和 P 掺杂导致碳基质中原子尺寸变化,引起结构扭曲和电荷密度改变
这是根据Creative Commons Attribution许可条款(https://creativecommons.org/licenses/4.0)的开放访问出版物。请注意,重复使用,重新分配和复制尤其要求作者和来源都有信用。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。