有机半导体,特别是过渡金属卟啉(TMP)和TM邻苯烷(TMPC),可以被视为可以用作一类材料,可用于创建各种适应性和低成本的分子基于分子的电器设备。1–4为了充分利用这些接口的潜力,有机半导体组件的物理,化学和转运特性的理解和能力至关重要。5,6在此框架内,控制金属电荷和有机阵列中的自旋状态的能力是迈向分子自旋的实现的一步,并且已经表明,分子中的单电子注入可以极大地改变其特性。沿着这些线路,对单分子连接的扫描隧道显微镜(STM)研究表明,电子通过仅通过更改磁场而更改磁场来选择电子通过两个不同的3D原子轨道(AOS)和TIP-FEPC-AU交界处的Electron途径传播。该分子装置中的可调巨型磁倍率起源于
摘要。在这项工作中,通过拉曼光谱法研究了质子照射和铂杂质对硅样品晶体结构的影响。已经确定,具有铂的Si的单晶掺杂会导致小变化和拉曼光谱中新振动的出现。在521 cm – 1处主硅峰的强度降低了1.6倍,而其FWHM实际上没有变化,约为4.0 cm – 1。这种峰强度的降低可能是由于PT扩散而导致硅晶格结构中键的键和破坏。表明,在Si 光谱中60–280 cm1范围内的新振动的出现与元素PT的存在和PTSI的形成有关。已经发现,具有600 keV质子的Si 样品的照射会导致拉曼光谱发生变化,而PT和/或PTSI的峰消失了。
BaTiO 3 化合物:DFT 研究 A. Sohail a、SA Aldaghfag b、MKButt a、M. Zahid c、M.Yaseen a,*、J. Iqbal c、Misbah c、M. Ishfaq a、A. Dahshan d、ea 自旋光电子学和铁热电 (SOFT) 材料与器件实验室,巴基斯坦费萨拉巴德 38040 农业大学物理系 b 沙特阿拉伯利雅得 11671 诺拉公主大学 (PNU) 科学学院物理系 c 巴基斯坦费萨拉巴德 38040 农业大学化学系 d 沙特阿拉伯艾卜哈国王大学科学学院物理系 e 埃及塞得港大学科学学院物理系 钒 (V) 掺杂对采用自旋极化理论研究了不同浓度(x = 12.50%、25%、50%、75%)对BaTiO 3 钙钛矿物理性能的影响。两种状态的电子能带结构(BS)表明,Ba 0.875 V 0.125 TiO 3、Ba 0.75 V 0.25 TiO 3、Ba 0.5 V 0.5 TiO 3 和Ba 0.25 V 0.75 TiO 3 化合物均为半金属铁磁(HMF)材料。结果表明,V 对Ba 1-x V x TiO 3 化合物的HMF行为起着重要作用。此外,磁特性证实了所有所述化合物的磁矩的整数值。在光学性能方面,还计算了反射率R(ω)、光吸收α(ω)、介电函数ε(ω)、消光系数k(ω)和折射率n(ω)。完整的光学参数集表明上述材料可用于可见-紫外光电子器件。基于半金属 (HM) 的结果,V 掺杂的 BaTiO 3 可用于自旋电子学应用。 (2021 年 6 月 20 日收到;2021 年 10 月 5 日接受) 关键词:半金属铁磁体、态密度、磁矩、光学参数 1. 简介在过去的十年中,HMF 材料因其在隧道结、光电子学和磁性器件中的应用而引起了人们的广泛关注。此外,HMF 材料在自旋电子学中起着重要作用,因为这些材料包含两种自旋态,一种自旋版本表现出金属行为,而另一种自旋态表现得像半导体或绝缘体。HMFM 化合物,例如 PtMnSb 和 NiMnSb Heusler 合金,最初由 Groot 等人 [1- 4] 报道。
摘要:半导体需要稳定的掺杂才能应用于晶体管、光电子学和热电学。然而,这对于二维 (2D) 材料来说是一个挑战,现有的方法要么与传统的半导体工艺不兼容,要么会引入时间相关的滞后行为。本文我们表明,低温 (<200 ° C) 亚化学计量 AlO x 为单层 MoS 2 提供了稳定的 n 掺杂层,与电路集成兼容。这种方法在通过化学气相沉积生长的单层 MoS 2 晶体管中实现了载流子密度 >2 × 10 13 cm − 2、薄层电阻低至 ∼ 7 k Ω / □ 和良好的接触电阻 ∼ 480 Ω · μ m。我们还在这个三原子厚的半导体上实现了创纪录的近 700 μ A/μ m (>110 MA/cm 2 ) 的电流密度,同时保持晶体管的开/关电流比 >10 6 。最大电流最终受自热 (SH) 限制,如果器件散热效果更好,最大电流可能超过 1 mA/μ m 。这种掺杂的 MoS 2 器件的电流为 0.1 nA/μ mo,接近国际技术路线图要求的几个低功率晶体管指标。关键词:2D 半导体、电流密度、掺杂、高场、自热、MoS 2 、Al 2 O 3 T
窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
摘要 本文制备了不同锡含量(a从0.0到0.1范围)的多元Pb 0.75 Ba 0.25 (Zr 0.65 Ti 0.35 ) 1- a Sn a O 3 (PBZT/Sn) 陶瓷。采用无压烧结法对PBZT/Sn陶瓷样品进行致密化。研究了SnO 2 含量对PBZT/Sn陶瓷的晶体结构、微观结构、直流电导率和电物理性能(包括介电和铁电测试)的影响。PBZT/Sn陶瓷样品在铁-顺电相变温度下表现出高的介电常数,表现出相变的弛豫特征。 PBZT/Sn 材料中 SnO 2 含量过高(a = 0.1)可能会导致晶格应力和结构缺陷,从而导致陶瓷样品的铁电和介电性能下降。本研究表明,在基础 PBZT 化合物中添加 SnO 2(以适当的比例)可以影响微机电一体化和微电子领域实际应用所必需的参数。
探索新的掺杂材料对于提高半导体的性能,效率和多功能性至关重要。perovskites具有多种结构和可调性,已成为下一代半导体的有前途的候选人。机器学习潜力(MLP)在有效预测散装材料的材料特性方面表现出了巨大的希望。然而,缺乏用于钙壶的全面掺杂数据集阻碍了数据驱动技术在该域中进行高通量筛选和材料发现的应用。在这项工作中,我们提出了一个掺杂数据集“ perovs-opant”,其中包含来自438个不同掺杂的钙钛矿材料宽松轨迹的20,000多个密度功能理论(DFT)数据点。使用perovs-opants,我们评估了在散装材料轨迹上预先介绍的基础模型MACE-MP,以标记最先进的MLP的性能。我们的结果表明,尽管MACE-MP在散装晶体上表现出色,但Perovs-opants代表了分布的挑战,并具有重大的预测错误。我们通过对MACE-MP进行填充以实现佩洛斯型和原始散装晶体的比较建模来赎回这些效果。
当前研究的目的是解决两个重大的环境清理问题。第一个涉及回收用过的锂离子电池(LIB),第二个涉及在水中发现的抗生素的降解。可以从也已与硼(BRGO)掺杂的用过的Libs合成还原的氧化石墨烯(RGO)。当BRGO和可见的活性BI 2 WO 6(BWO)混合在一起时,形成纳米复合材料(BWO/BR)。结构,形态和光谱特征证实了BRGO,BWO和BWO/BR纳米复合材料的序列。抗生素四环素盐酸(TCH)和环丙沙星(CIP)已通过所有三种新制成的材料进行了测试,以进行光催化降解。与BRGO结合后,发现将BWO(2.73 eV)的带隙降低至2.22 eV。在可见光下,BWO/BR表现出升高的TCH降解(93%),发现在存在阳光下会增加(95%)。在存在BWO/BR的情况下,据报道,CIP的降解分别为72%,95%和97.5%,在紫外线,可见和阳光下分别为。在存在BWO/BR的情况下,检查了反应条件,例如pH,催化剂和初始浓度的量,以降解TCH和CIP。已经发现,pH 6和8分别是TCH和CIP的理想选择。还进行了药物废水中TCH和CIP降解的研究;在存在BWO/BR和可见光的情况下,降解效率分别确定为69%和72%。在暴露于可见光之前和之后,在90分钟之前和之后,检查了在存在BWO/BR的情况下检查所有大肠杆菌,单核细胞增生菌,伤寒链球菌和金黄色葡萄球菌的所有抑制区域,在此期间,观察到接近零的抑制区域。进行了使用液相色谱 - 质谱法(LC-MS)进行研究以鉴定TCH和CIP降解的中间产物。
这项研究着重于通过合成氧化铜(CEO2)来对抗细菌感染,并使用协同降水方法将其用3%和5%锌掺杂以及7%的钴掺杂来对其进行对抗。系统地研究了结构,形态,光学和抗菌特性。X射线衍射(XRD)表明,退火后,氧化纯含氧岩纯含量从氧化物的12nm增加到13.42nm。扫描电子显微镜(SEM)确认所有样品的聚集球结构。弥漫性反射光谱(DRS)显示出扩大的能带隙,从2.76EV的氧化物原始葡萄含量为3.09EV,即退火的7%钴掺杂含氧铜,表明电子特性的潜在变化。抗菌活性表明,7%的钴掺杂含氧岩氧化物表现出对大肠杆菌和金黄色葡萄球菌的抑制作用最大,表明与其他合成材料相比,抗菌活性上等。因此,这项研究展示了一种针对氧化葡萄纳米颗粒的定制方法,突出了修饰对增强抗菌应用的重要性。这项研究的发现有助于发展晚期抗菌剂的发展,利用了修改的氧化葡萄纳米颗粒的独特特性。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。