简介乳腺癌是一种异质性恶性肿瘤,根据其临床分类、疾病分期和治疗选择,其预后各不相同。在美国,预计 2022 年将有约 290,560 例新病例和 43,780 例乳腺癌相关死亡病例 (1)。三阴性乳腺癌 (TNBC) 占所有乳腺癌的 10%–20%,从生物学角度来看更具侵袭性 (2)。临床上,由于缺乏雌激素、孕酮和人表皮生长因子受体的表达,TNBC 对激素靶向治疗无反应 (3),因此常规化疗成为标准治疗方法。环磷酰胺 (CPA) 和阿霉素 (DOX) 是 TNBC 最常用化疗方案中的两个关键成分 (4)。虽然这种药物组合改善了早期 TNBC 的预后,但晚期 TNBC 患者的生存率明显较低。初始化疗反应后,大多数 TNBC 患者仅达到中等总体病理完全缓解,同时治疗效果低下且药物不良反应严重 (5)。因此,迫切需要改进基于 CPA/DOX 的治疗策略,以在最大程度降低不良毒性的同时提高对 TNBC 的疗效。
1. 纳米医学和治疗诊断学系,实验分子成像研究所,亚琛工业大学医学院,亚琛工业大学和亥姆霍兹生物医学工程研究所,德国亚琛 52074。2. 病理学研究所,亚琛工业大学医学院,亚琛工业大学,德国亚琛 52074。3. 荷兰乌得勒支大学医学中心成像和肿瘤学系,乌得勒支 3584 CX。4. 荷兰乌得勒支大学药剂学系,乌得勒支 3584 CG。5. 日本东京帝京大学药学院药物和基因递送研究实验室。6. 荷兰恩斯赫德特温特大学靶向治疗学系。 7. 新加坡国立大学杨潞龄医学院外科系,新加坡 119074。8. 中国科学院上海药物研究所国家新药研究重点实验室和药物制剂中心,上海 201203。
目的:本研究旨在将载阿霉素纳米粒子微泡 (Dox-NP-MB) 疗法应用于原位肝细胞癌 (HCC) 大鼠模型,并研究造影增强超声 (CEUS) 和体素内不相干运动扩散加权磁共振成像 (IVIM-DWI) 对反应评估的效用。方法:28 只 N1S1 HCC 模型大鼠在第 0 天和第 7 天分别接受 Dox-NP-MB(组 [G] 1,n=8)、单独使用阿霉素 (Dox)(G2,n=7)、单独使用纳米粒子微泡(G3,n=7)或生理盐水(G4,对照,n=6)治疗,并于第 11 天处死。每次治疗前和安乐死前进行 IVIM-DWI 和 CEUS。通过与对照组相比肿瘤体积生长抑制的百分比来评估疗效。通过体重变化和血液检查评估毒性。分析治疗后IVIM-DWI和CEUS参数的变化。结果:与G4相比,G1和G2的肿瘤体积增长分别抑制了48.4%和90.2%。与G2相比,G1的体重变化程度(中位数,91.0%[四分位距,88.5%~97.0%]vs. 88.0%[82.5%~88.8%],P<0.05)和白细胞减少(1.75×10 3 细胞/μL[1.53~2.77]vs. 1.20×10 3 细胞/μL[0.89~1.51],P<0.05)均显着降低。第一次治疗后,G3、G4组CEUS峰值增强、冲洗率、冲洗灌注指数增加,G1、G2组CEUS峰值增强、冲洗率、冲洗灌注指数降低;G1、G2组表观扩散系数、真扩散系数、灌注分数与基线相比显著增加(P<0.05)。结论:Dox-NP-MB显示Dox毒性降低。CEUS和IVIM-DWI部分参数的早期变化与治疗反应相关。
有效治疗胶质母细胞瘤仍然是一项艰巨的挑战。治疗药物开发的主要障碍之一是它们无法穿过血脑肿瘤屏障 (BBTB)。局部给药是一种替代方法,但在缺乏靶标选择性的情况下仍可能产生毒性。在这里,我们展示了由 ssDNA 两亲分子自组装形成的纳米管在血清和核酸酶中是稳定的。双侧脑注射后,纳米管在肿瘤中比在正常脑中更易保留,并通过清道夫受体结合和巨胞饮作用被胶质母细胞瘤细胞吸收。静脉注射后,它们穿过 BBTB 并内化到胶质母细胞瘤细胞中。在微小残留疾病模型中,局部给药阿霉素在脾脏和肝脏中显示出毒性迹象。相反,通过纳米管输送阿霉素不会引起全身毒性,并提高小鼠的存活率。我们的结果表明,ssDNA 纳米管是一种很有前途的胶质母细胞瘤药物输送载体。
利用增强渗透和滞留 (EPR) 效应以及主动热靶向方法 (15-17, 21),将药物直接注射到肿瘤部位。从而增加肿瘤中载药药物的相对浓度,提高药物的治疗指数,减轻患者不可接受的毒性 (12, 22)。这种靶向的一个显著例子可以在以前的研究 (21) 中找到,其中将荧光标记的 CPP-ELP 注射到 S2013 肿瘤小鼠体内。一组动物在注射 CPP-ELP 后立即接受红外 (IR) 激光对肿瘤进行高温治疗,使肿瘤核心的温度达到 42 °C,而另一组动物则免于高温治疗。这项研究表明,肿瘤的红外加热使肿瘤产生的热量增加 2-3 倍
纳米载体和 QD-FA-DOX 纳米缀合物。所得 ZP 值如表 2 所示。ZP 在 QD-FA-DOX 纳米缀合物的稳定性中起着至关重要的作用。ZP 值(正或负)越高,分散性越稳定。一般来说,zeta 电位值大于正的纳米粒子
方法:在这项研究中,NSCLC细胞系A549和H460在低氧条件下培养1周,以诱导对阿霉素(DOX)的耐药性。通过逆转录和实时聚合酶链反应(RT-QPCR),Western blot和Dual-Luciferase Assays测定,miR-194-5p和HIF-1之间的连接揭示了。我们使用TUNEL染色和CCK-8测试来评估NSCLC细胞对DOX的敏感性。结果:我们发现缺氧诱导的NSCLC细胞增强了对DOX的抗性。miR-194-5p大大降低了,在缺氧诱导的耐药NSCLC细胞中增加了HIF-1。此外,MiR-194-5p通过直接抑制HIF-1成功诱导NSCLC细胞凋亡,从而增强了DOX敏感性。结论:miR-194-5p通过直接抑制HIF-1来增强NSCLC细胞对DOX的敏感性。这项工作为耐药NSCLC的基本治疗提供了见解。
乳腺癌是女性诊断为癌症相关死亡的主要原因[1-3]。三阴性乳腺癌(TNBC)是最激进的乳腺癌类型,这是由于复发病例的高百分比,转移的发病率很高,导致生存率较低。TNBC缺乏靶向受体,雌激素,孕酮和人表皮生长因子受体2(HER -2)的表达[4-7]。与其他乳腺癌亚型相比,TNBC的增殖率更高[6]。TNBC更有可能影响年轻妇女,占每年诊断的乳腺癌病例的10-20%[2,8]。治疗TNBC面临的主要临床挑战是缺乏已知的特异性治疗靶标,导致攻击TNBC的选择有限,从而导致预后不良。TNBC中的高异质性导致存在几个分子特征,这是其成功有效治疗的重要障碍[5-8]。因此,将常规的化学治疗剂和放射疗法保留为TNBC治疗的主要支柱。即使是临床推荐的药物的化学疗法也表现出不足的反应,高毒性和耐药性的发展[9,10]。这些挑战鼓励了大量研究改善当前可用的干预措施,并确定针对TNBC的有效治疗策略。
摘要:阿霉素是一种细胞毒性蒽环类衍生物,在许多不同形式的人类癌症中被用作化学疗法,并有所成功。然而,阿霉素治疗具有多种副作用,其中最严重的是心肌病,可能是致命的。卵毛素脂质体(doxil®)中的阿霉素封装已显示可增加肿瘤定位并降低心脏毒性。相反,这种脂质体的稳定性也导致循环时间增加并在皮肤中积聚,从而导致掌骨播出器红细胞性刺耳性,同时也限制了该药物在肿瘤部位的释放。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。 但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。 在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。这种doxil®-P700复合物可通过小鼠和人类乳腺癌细胞和永生的血管细胞增加了大约100倍的药物吸收,导致细胞毒性增加。使用P700以这种方式靶向脂质体可能会使阿霉素或其他药物的特定输送到广泛的癌症。
摘要:阿霉素是一种细胞毒性蒽环类衍生物,已被用于治疗多种不同类型的人类癌症,并取得了一定成功。然而,阿霉素治疗有几种副作用,其中最严重的是心肌病,这种副作用可能是致命的。聚乙二醇化脂质体 (Doxil ® ) 中的阿霉素封装已被证明可以增加肿瘤定位并降低心脏毒性。相反,这种脂质体的稳定性也会导致循环时间增加和皮肤蓄积,导致手掌红肿感觉异常,同时也限制了药物在肿瘤部位的释放。人们已经尝试使用各种受体特异性肽和抗体将这种脂质体特异性靶向肿瘤细胞。然而,针对单一表位会限制可能的肿瘤靶点数量,并增加通过突变产生肿瘤耐药性的风险。在本报告中,Doxil ® 与源自金属蛋白酶 3 组织抑制剂的肽序列 p700 偶联。与单独使用 Doxil ® 相比,这种 Doxil ® -P700 复合物可使小鼠和人类乳腺癌细胞以及永生化血管细胞的药物吸收量增加约 100 倍,从而导致细胞毒性增加。以这种方式使用 p700 靶向脂质体可能能够将阿霉素或其他药物特异性地递送到多种癌症中。