在研究生物神经网络等复杂动态系统时,模拟是继实验和理论之后的第三大支柱。当代脑规模网络对应于几百万个节点的有向随机图,每个节点的入度和出度为几千条边,其中节点和边分别对应于基本生物单位、神经元和突触。神经元网络中的活动也很稀疏。每个神经元偶尔会通过其传出突触向相应的目标神经元发送一个短暂的信号(称为尖峰)。在分布式计算中,这些目标分散在数千个并行进程中。空间和时间稀疏性代表了传统计算机上模拟的固有瓶颈:不规则的内存访问模式导致缓存利用率低。使用已建立的神经元网络模拟代码作为参考实现,我们研究了恢复缓存性能的常用技术(例如软件诱导预取和软件流水线)如何使实际应用程序受益。算法更改可将模拟时间缩短高达 50%。该研究表明,分配了本质上并行计算问题的多核系统可以缓解传统计算机架构的冯诺依曼瓶颈。
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
动机:通过将有向无环图 (DAG) 模型应用于蛋白质组数据推断出的有向基因/蛋白质调控网络已被证明可有效检测临床结果的因果生物标志物。然而,在 DAG 学习中仍然存在尚未解决的挑战,即联合建模临床结果变量(通常采用二进制值)和生物标志物测量值(通常是连续变量)。因此,在本文中,我们提出了一种新工具 DAGBagM,用于学习具有连续和二进制节点的 DAG。通过为连续和二进制变量使用适当的模型,DAGBagM 允许任一类型的节点在学习图中成为父节点或子节点。DAGBagM 还采用了引导聚合策略来减少误报并实现更好的估计精度。此外,聚合过程提供了一个灵活的框架,可以稳健地整合边缘上的先验信息以进行 DAG 重建。结果:模拟研究表明,与常用的将二进制变量视为连续变量或离散化连续变量的策略相比,DAGBagM 在识别连续节点和二进制节点之间的边方面表现更好。此外,DAGBagM 的表现优于几种流行的 DAG
添加材料并通过细化组成晶粒来提高强度(图1中Ⅰ)。理想的最终目标材料是纳米多晶体,其中纳米级金刚石或立方氮化硼晶粒直接紧密地结合在一起,而不包含任何粘合剂材料(图1中Ⅱ)。最终材料可以形成与单晶金刚石相似的高精度切削刃。此外,这种材料的不可解理性使切削刃的强度超过了单晶的强度。由于这些优异的特性,该材料在精密和微加工应用中很有前途。然而,这种创新的纳米晶材料不能仅仅通过扩展传统技术来创造。相反,开发创新的新工艺(产品创新)至关重要。我们开始研究和开发纳米多晶金刚石和纳米多晶立方氮化硼,旨在创造适用于更高速、更高效和更高精度切削应用的终极切削刀具材料。我们经过多年的努力,通过建立超高压新技术和直接转化烧结工艺,成功研制出这些新型超硬材料。本文详细介绍了这些新型超硬材料的开发、特性和应用。
结果:当您尝试旋转一个未煮过的鸡蛋时,其液体蛋黄和白色将四处移动,使鸡蛋摇摆而不是自旋。硬煮的鸡蛋将平稳旋转,因为内部是坚固的,因此更稳定。在四个洗净的蛋壳一半的破损边缘上,不可擦伤的蛋壳包裹胶带包裹胶带。修剪边缘,使鸡蛋坐平。将蛋壳放置,以便它们将支撑一些书的四个角落。仔细地平衡书籍的顶部。在蛋壳开始破裂之前,您可以堆叠几本书?结果:由于壳的弯曲形状,蛋壳可以支持书籍的重量。这种形状有助于将书籍的重量分配到整个外壳上,而不仅仅是最后。鸡蛋和苏打水在装满可乐的玻璃杯中浸泡30分钟至1小时。发生了什么?尝试用牙刷用牙膏刷鸡蛋。发生了什么?鸡蛋和牙齿之间有任何相似之处吗?结果:鸡蛋用可乐染色,并被牙膏去除。
量子计算提供了全息算法的灵感[37],进而启发了用于计算计数问题的Holant框架(在[18]的Conforence版本中首次引入)。计算计数问题包括各种计算问题,从图表上定义的组合问题到量子计算中统计物理学和计算幅度中计算部分函数的问题。它们正在不同的框架中进行分析,包括计算约束满意度问题(计数CSP)和Holant问题的框架。计算计数问题是一个积极研究的领域,但到目前为止,似乎没有尝试将量子信息理论或量子计算中的知识应用于其分析。尽管如此,如下所示,量子信息理论,尤其是量子纠缠的理论,也是对Holant问题的研究的新途径。通过一组函数f参数化了一个holant问题;在本文中,我们考虑了布尔输入的有限代数复合物值函数。限制到有限的设置,即计数CSP社区中的标准。我们使用它来避免在有限的功能集中允许问题进行参数时出现的有效可计算性的问题。在以下内容中,布尔输入的所有代数复合物值函数的集合表示为υ。我们还写入∂n:= {f∈υ| Arity(f)= n}限制了Arity n功能的限制。此地图分配给每个顶点v∈Va函数π(v)= fv∈F。问题的实例Holant(F)由一个多数G =(V,E)组成,带有顶点V和边缘E,以及MAPπ。该地图还设置了V和F V的参数的边缘之间的两次试验,因此V的程度必须等于f V的arity。给定地图π,任何分配σ:e→{0,1}布尔值的边缘诱导重量
在其各自的L -Edges处第一行转变元件的软X射线吸收光谱提供了有关金属中心的氧化和自旋态的重要信息。但是,辐射敏感样品中相关的样品损伤显着改变了氧化还原活性金属中心的电子和化学结构。在这里,我们测量了Mn III(ACAC)3复合物的软X射线光谱,该光谱在八面体环境中包含氧化还原活性Mn III金属中心,并具有超导性的过渡 - 边缘检测器。为了减少主要是由于自由基和电子扩散而造成的次要损伤,在实心样品上收集光谱在30 K和80 K下收集。从第一次扫描开始,我们检测到X射线引起的样品损伤的贡献,导致MN II强度的变化。然而,在低温下,尤其是在30 K时,我们不会观察到辐射损伤的逐渐增加,并在同一位置使用X射线束连续扫描。在我们的估计剂量为90 kgy时,我们发现Mn III(ACAC)3的62%仍然完好无损。但是,在室温下,我们看到辐射损害逐渐增加,而在同一地点的扫描数量增加,这与在其他研究中相同的次级自由度和电子扩散率增加的可能性是一致的。
图 2 将网络顶点集划分为 4 个元素的示例(第 1 列),以及由划分生成的 σ 代数的维度 3 元素 A 诱导的全子网 G full A(第 2 列)、内部子网 G intra A(第 3 列)和子网间 G inter A(第 4 列)(深灰色区域)。在每个面板中,定义相应子网的顶点和边都显示为黑色。
Ritter 204 手动检查台。采用手动检查台的最新设计、舒适性和功能,真正提供高效的患者护理。一体式无缝抽屉等特点具有易于清洁的圆边,可容纳溢出的液体,使其远离检查台的其他区域,从而改善感染控制。软垫顶部采用人体工程学设计,外观柔软舒适,让您的患者感觉更放松。一体式无缝软垫顶部无需工具即可轻松拆卸,可进行彻底清洁或快速更换软垫颜色。我们增加了踏脚板的尺寸,让患者感觉更安全,更自信地坐在检查台上……尽量减少医生或他们的工作人员的压力和压力。台阶表面易于清洁,防滑,边缘圆润,更加安全。三个宽敞的侧抽屉为手术服、窗帘和其他物品提供了充足的存储空间,同时还可以帮助您整理各种小件物品和大件物品。此外,还有两个前抽屉,方便在盆腔检查期间取用物品。Ritter 204 设计为安全支撑 500 磅。提供 7 种标准 Ritter 颜色