有些事情很快变得至关重要。例如,Fein斜角是根据DIN EN ISO 9692 1:2013 12标准设计的,使其成为准备焊缝的必不可少的工具。作为一种手动引导工具,我们的斜角恰好是倾斜的圆形边缘以进行表面保护。
视野是指通过摄像头镜头可以看到的区域。它直接反映出远程加入的参与者可以看到多少会议空间。180 度的视野让桌子上的每个人都清晰可见,即使是靠近摄像头或坐在房间边缘的人。
如何建立因果关系的研究在许多学科中引起了越来越多的关注 [1、2、3、4、5、6],尤其是在无法进行随机对照实验的情况下。有向无环图 (DAG) [1、2、5] 是可视化假设的因果关系、确定可能出现偏差的位置以及告知如何解决偏差的关键工具之一。这些图显示了暴露、结果和其他相关变量之间的联系。DAG 被广泛应用于流行病学 [7、8、9]、社会学 [10、11、12]、教育学 [13、14、15] 和经济学 [16、17、18]。 DAG 由节点和边组成,节点表示变量,边通过显示从原因指向结果的箭头来传达直接的因果关系。重要的是,如果一个图没有变量是其自身的祖先,即图中没有循环,并且每条边都指向一个方向,则该图符合 DAG 的条件 [19]。要使 DAG 被视为因果关系,它需要包含图中任何两个现有变量的共同原因的所有变量 [1]。
在其边缘有离散时间标签的时间网络中,信息只能沿着边缘的序列“流”,而无需降低(分别增加时间标签。在本文中,我们第一次尝试了解一个边缘上信息流的分解如何影响其他边缘上信息流的方向。通过自然地扩展静态图中及时取向的经典概念,我们介绍了时间及时方向的基本概念,并系统地研究了其算法行为。我们的主要结果是一种概念上的简单,但在技术上涉及的多项式时间算法,用于识别时间图G是否可以定位。与众不同,我们证明,令人惊讶的是,必须认识到G是否可以严格定位。此外,我们还将进一步的与时间传递性有关的问题引入,尤其是它们的时间传递完成问题,我们证明了算法和硬度结果。
请注意,这些可变大小的结构可以出现在输入级别、输出级别或两者。例如,翻译问题可以看作是序列到序列的问题。输入和输出序列不必具有相同的长度。蛋白质二级结构的预测可以看作是从具有 20 个字母的字母表(每个字母代表一种天然存在的氨基酸)到具有三个字母的字母表(对应于三个主要的二级结构类别(α-螺旋、β-链和卷曲))的翻译问题。在这种特殊情况下,输入序列和输出序列具有相同的长度。在解析问题中,输入是序列,输出是树。在蛋白质接触图预测中,输入是序列,输出是矩阵,依此类推。在所有这些问题中,标签可以存在于节点上、边缘上或两者上。有机化学中的小分子可以在节点上具有与原子类型(例如 C,N,O,H)相对应的标签,也可以在边缘上具有与键类型(例如单键,双键,三键和芳香键)相对应的标签。
自动从单个深度进一步检测可抓地的区域是布操作中的关键要素。布料变形的巨大变异性促使当前大多数方法专注于识别特定的握把而不是半偏零件,因为当地区域的外观和深度变化比较大的区域更小,更易于建模。但是,诸如折叠或辅助敷料之类的任务需要识别较大的细分市场,例如语义边缘带有更多信息,而不是点。因此,我们首先仅使用深度图像来解决变形衣服中细粒区域检测的问题。我们实施了T恤的方法,并最多定义了多达6个不同程度的语义区域,包括领口,袖袖和下摆的边缘,以及顶部和底部的握把。我们引入了一个基于U-NET的网络,以细分和标记这些部分。我们的第二个贡献与培训拟议网络所需的监督水平有关。大多数方法都学会