量子计算提供了全息算法的灵感[37],进而启发了用于计算计数问题的Holant框架(在[18]的Conforence版本中首次引入)。计算计数问题包括各种计算问题,从图表上定义的组合问题到量子计算中统计物理学和计算幅度中计算部分函数的问题。它们正在不同的框架中进行分析,包括计算约束满意度问题(计数CSP)和Holant问题的框架。计算计数问题是一个积极研究的领域,但到目前为止,似乎没有尝试将量子信息理论或量子计算中的知识应用于其分析。尽管如此,如下所示,量子信息理论,尤其是量子纠缠的理论,也是对Holant问题的研究的新途径。通过一组函数f参数化了一个holant问题;在本文中,我们考虑了布尔输入的有限代数复合物值函数。限制到有限的设置,即计数CSP社区中的标准。我们使用它来避免在有限的功能集中允许问题进行参数时出现的有效可计算性的问题。在以下内容中,布尔输入的所有代数复合物值函数的集合表示为υ。我们还写入∂n:= {f∈υ| Arity(f)= n}限制了Arity n功能的限制。此地图分配给每个顶点v∈Va函数π(v)= fv∈F。问题的实例Holant(F)由一个多数G =(V,E)组成,带有顶点V和边缘E,以及MAPπ。该地图还设置了V和F V的参数的边缘之间的两次试验,因此V的程度必须等于f V的arity。给定地图π,任何分配σ:e→{0,1}布尔值的边缘诱导重量
主要关键词