该角色的目的是通过运用其知识和专业知识来支持生物科学学院的各种研究活动,为显微镜生物科学平台的所有EM使用者提供专业服务。该设施位于生理学,开发与神经科学系,提供高级成像服务,目前为大学和外部商业用户提供100多个研究小组。目前,该中心具有带有相关样品准备设备的FEI Verios 460 SEM和Tecnai G2 TEM。该角色将提供基本的支持,以改善我们最先进的EM设施的研究吞吐量,该角色持有人将通过帮助常规的湿务实验室和仪器维护,在设施的日常运行中与EM团队紧密合作,通过PPM在线预订系统实施和管理安全程序,从而确保安全过程来维持安全的工作环境。此外,角色持有人将执行各种样本准备协议,帮助培训仪器上的新用户和现有用户,并在确定最佳实验设计和适当的方法方面发挥越来越活跃的作用,具体取决于研究项目的要求,并帮助跟踪个人研究项目的进度。
持续投资于 MS/MS 技术开发对于提供工具和工作流程至关重要,这些工具和工作流程可以表征越来越全面的化合物类别、分子结构和样品类型。因此,EAD 已被证明是一个改变游戏规则的技术,可以改变 MS/MS 实验并能够获取必要的碎片数据。本白皮书概述了当前 MS/MS 方法所面临的挑战以及使用新的可调 EAD 碎片可以实现的显著优势。示例展示了 EAD 在小分子和代谢物的结构解析、异构化合物的区分和定量、蛋白质修饰的识别和定位以及脂质的完整表征方面的强大功能。
毫米波和太赫兹频率的真空电子器件在现代高数据速率和宽带通信系统、高分辨率检测和成像、医学诊断、磁约束核聚变等领域发挥着重要作用。由于电子在真空介质中运动速度快,与现有的其他辐射源(如固态器件)相比,它们具有高功率、高效率以及紧凑性的优势。我们设立“高频真空电子器件”专刊的目的是加强有关这些器件的理论、设计、仿真、工艺和开发的研究信息的交流,促进它们的应用,并吸引年轻的研究人员和工程师进入这个重要领域,这是现代电子科学和信息技术的重要组成部分。真空电子射频功率器件有很多种,包括线束器件、交叉场器件和快波器件。在高达太赫兹的高频范围内,速调管、行波管、波谷振荡管和回旋管因其高功率或宽瞬时或调谐带宽而受到广泛研究。为了在毫米波和太赫兹频率下获得高质量的性能,过去十年中出现了新的技术和工艺,包括使用 MEMS 和 3D 打印的微加工、用于窗口和衰减器的新型金刚石相关材料。同时,人们还研究了新的慢波结构和谐振结构,如超结构、高阶模式操作和片状电子束,用于获得高功率;杂散抑制;并降低制造难度,特别是在高频范围内。阴极、电子枪、I/O 结构、磁聚焦系统和收集器等器件零部件的革命性技术在高频真空电子器件的发展中发挥了关键作用。本期特刊包含 15 篇论文,涵盖了广泛的主题,涉及频率范围高达 340 GHz 的高频真空设备的设计、仿真、制造和测试,以及包括回旋管、TWT 和 EIK 在内的设备,以及波束形成和限制阴极、慢波结构和模式转换器等。高频回旋管是动态核极化核磁共振 (DNP-NMR) 应用的核心设备,可显着提高医疗系统和科学研究中高场 NMR 的灵敏度和分辨率。北京大学论文[1]《330 GHz/500 MHz DNP-NMR应用的线性偏振高纯度高斯光束整形与耦合》提出了用于330 GHz/500 MHz DNP-NMR系统的波纹TE11-HE11模式转换器和三端口定向耦合器的设计与计算。模式转换器的输出模式呈现出高度
•扫描电子显微镜是使用精细的能量电子束来观察和分析散装样品的表面微观结构的仪器。•电子光系统用于形成电子探针,该探针可以以栅格模式在样品表面扫描。•通过该梁与样品的相互作用产生了各种信号。可以通过适当检测器的应用来收集或分析这些信号。•对于成像,可以组装在栅格图案中每个位置上获得的信号振幅以形成图像。
尘埃危害被认为是未来月球勘探的技术挑战之一。在我们过去的工作中,通过电子束从各种表面清除灰尘颗粒引入了一种新的粉尘缓解技术。这项技术是基于修补电荷模型开发的,该模型表明,电子束在灰尘颗粒之间的微腔内的电子束诱导的二次电子的发射和重新吸收会导致灰尘颗粒上的足够大电荷,从而导致由于强力排斥力而导致其从表面释放。在本文中,通过将样品相对于梁旋转,通过在灰尘覆盖的样品表面上的光束入射角改变了该技术的有效性。由于微腔的随机排列,将会以各种入射角将其暴露于光束,从而导致表面上更多的灰尘释放。对三个样本进行了清洁性能:玻璃,太空服和光伏(PV)面板。月球模拟物(直径<25μm)沉积在样品表面上,以使样品的初始清洁度为0%(全灰尘覆盖率)和40%。除了用固定的光束角度达到的清洁度外,还显示出梁入射角的整体表面清洁度增加了10-20%。玻璃和太空服样品的最终清洁度达到83 - 92%。涂有MGF 2的PV面板显示出对灰尘的更粘性,最大清洁度为50 - 63%。
摘要固态量子发射器在现实世界量子信息技术中的应用需要具有高过程产量的精确纳米制动平台。具有出色发射特性的自组装半导体量子点已被证明是满足许多新型量子光子设备需求的最佳候选者之一。然而,它们的空间和光谱位置在统计上以太大而无法通过固定光刻和灵活的处理方案进行整体统计量变化。我们通过基于精确且方便的阴极发光光谱进行了灵活和确定性的制造方案来解决这个严重的问题。本文介绍了该先进的原位电子束光刻的基础和应用示例。尽管我们在这里专注于作为光子发射器的量子点,但这种纳米技术概念非常适合基于基于量子发射器的各种量子纳米量设备的制造,这些量子发射器表现出适当的强大发光信号。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
放射治疗可能有助于实现不同的治疗目标。例如,它可以提高手术的有效性,有助于防止癌症扩散,或减轻晚期癌症的症状。大多数放射治疗设备使用光子束。光子也用于X射线,但剂量较低。光子束可以到达体内深处的肿瘤。当光子束穿过身体时,它们会沿途散射一些辐射。这些射线到达肿瘤后不会停止,还会到达正常组织。放射治疗是癌症治疗方法之一,它使用高能粒子或波(如X射线、伽马射线、电子束)或使用某种类型的能量来阻止癌细胞的生长和分裂。结果,细胞会逐渐萎缩并死亡。放射治疗的目标是在对健康细胞的损害最小的情况下摧毁癌细胞,但有时这种治疗也会损害癌组织附近的健康细胞,或通过破坏其DNA来阻止它们生长和分裂。此外,放射治疗可作为治疗的一部分,在手术切除恶性肿瘤后防止肿瘤复发。放射治疗可增强化疗的效果,并可在化疗前、化疗后或化疗同时用于敏感肿瘤。
实验室由一组集成的训练模块组成,通常在电气安装领域,金属外壳(或孤立的盒子)中,并具有清晰的概要形式,描绘了内部逻辑。每个模块包含一个特定的电函数,可以连接到其他模块,以实现不同的电路组合并执行复杂的实验。学生的显着优势在于,他可以专注于他正在设计的电气系统的功能流,而不必担心组件的特征。另一个优点是接线以及实现时间大大减少了。可以将模块设置在可以分组的站点上,以执行复杂的实验,包括故障排除。手册描述了用于住宅和工业装置的理论和实际级别的电路。这些模块也可以非常有效地用作教师演示者。