共分析了 300 名连续患者,这些患者接受了 CMR 检查以鉴别诊断 LVH。50 名患者确诊为 CA(39 名患有 AL-CA,11 名患有转甲状腺素蛋白淀粉样变性),198 名患者确诊为肥厚性心肌病,47 名患者确诊为高血压性心脏病,5 名患者确诊为法布里病。半自动深度学习算法 (Myomics-Q) 用于分析 CMR 图像。区分 CA 与其他病因的最佳截止细胞外体积分数 (ECV) 为 33.6%(诊断准确率为 85.6%)。自动 ECV 测量显示,对于 AL-CA 患者(修订版 Mayo III 或 IV 期)的心血管死亡和心力衰竭住院综合预后价值显著(ECV 40% 的调整风险比为 4.247,95% 置信区间为 1.215– 14.851,p 值 = 0.024)。将自动 ECV 测量纳入修订版 Mayo 分期系统可实现更好的风险分层(综合判别指数 27.9%,p = 0.013;分类净重新分类指数 13.8%,p = 0.007)。
心血管疾病(CVD)是世界上最常见的疾病之一,具有高致病性和高死亡率的特点(Vong等,2018;Wang等,2022a;Qian等,2021)。CVD的临床治疗主要包括三种方式:药物治疗,这是最广泛的治疗方式,也是CVD治疗的基础;介入治疗,包括射频消融和心脏起搏治疗;外科治疗,包括搭桥治疗和心血管移植(Abdelsayed等,2022;Lunyera等,2023;Krahn等,2018)。血管移植主要用于恢复或建立新的血流通路,以维持或改善组织或器官某个区域的血液循环,例如因创伤或切除导致血管段缺损,或动脉栓塞或淋巴阻塞而需要“搭桥”形成循环系统的情况(Xing et al.,2021;Zhao et al.,2023)。血管移植要求供应血管具有与受体血管相同的外径和足够的长度。移植物也面临供区血液循环受损(缺血或淤滞)等问题。因此,迫切需要高性能的人工血管移植来替代自体血管进行血流重建。目前小口径人工血管(<6 mm)主要用于冠状动脉搭桥术、外周血管搭桥术、血管创伤(缺损≥2 cm)、血液透析的组织血管通路、器官功能恢复等(Asakura等,2019;Wang等,2021;Wu等,2018),但人工血管移植可导致吻合口血栓形成、内皮增生等严重并发症,影响管腔通畅性(Oliveira等,2020;Teebken和Haverich,2002;Zhuang等,2020)。此外,目前的人工血管支架虽然具备一定的力学性能和生物相容性或能提供血管再生所需的生化信号,但在模拟天然血管的结构和功能方面还存在明显的不足,现有的支架往往不能充分模拟天然血管网络的拓扑结构,并会诱导细胞爬行,从而影响血管支架在临床应用中的效果(Liang等,2016;Cheng等,2022)。因此,为提高小口径人工血管的通畅性,通过材料选择、表面改性等提高生物相容性/内皮化/力学性能成为重点研究方向。静电纺丝技术可以制备具有高比表面积和孔隙率的微/纳米纤维,可以模拟细胞外基质,促进细胞黏附、增殖和分化,为细胞提供良好的生长环境。该接收装置的设计可以制备不同直径的管状结构,是制备小直径人工血管支架的理想方法(姚等,2022;郭等,2023;宋等,2023;王等,2022b)。特别是利用该技术制备的血管支架可以负载生物因子,提高血管支架的生物相容性,促进血管快速内皮化。虽然目前的人工血管支架已经具备一定的力学性能、生物相容性或能提供血管再生所需的生化信号,但如何结合现有支架的优势,将生物因子负载于血管内,实现血管再生,是当前血管支架研究的热点。
摘要世界卫生组织(WHO)确定了由于抵抗问题而需要开发新抗菌剂的病原体清单;这些包括铜绿假单胞菌,大肠杆菌和金黄色葡萄球菌。此外,分枝杆菌已用于抗菌发现,以解决结核病的增加。在这项研究中,对抗菌活性,继发代谢产物分析和菌株鉴定的优化是在INACC A759上进行的。INACC A759的细胞内和细胞外提取物具有不同的抗菌活性。提取物的最小抑制浓度(MIC)值分别抑制Smegmatis,大肠杆菌和铜绿假单胞菌的生长,分别为50、25和100 µg/ml(细胞内),以及25、25、25、25和100 µg/ml(细胞外)。但是,提取物都不能抑制金黄色葡萄球菌的生长。使用高分辨率 - 质量光谱法(HR -MS)的代谢物分析导致肌动杆菌A759的两种提取物之间的主要化合物差异,即N-乙酰基酰胺(C 10 H 13 NO 2 /179.0945)(2 /179.0945)(24.24%)(24.24%)(24.24%)(24.24%)(24.24%)(24.24%)(palmiteicaliral酸) /273.27034)(86.92%)(细胞外)。基于16S rRNA基因的分子分析,静脉细菌INACC A759与Forh46链霉菌菌株相同。先前尚未报道过抗菌活性和二级代谢物谱。
细胞外囊泡 (EVs) 是纳米尺寸的颗粒,与各种生理和病理功能有关。它们在细胞间通讯中发挥关键作用,并被用作各种细胞成分的运输工具。在人乳中,EVs 被认为对获得性免疫的发展很重要。最先进的分析方法无法在单个囊泡水平上提供无标记的化学信息。我们引入了一种协议,利用光热扫描探针红外光谱 (AFM-IR),一种纳米级化学成像技术,来分析单个 EVs 的结构和组成。该协议包括通过微接触印刷将 EVs 固定在用抗 CD9 抗体功能化的硅表面上。固定化 EVs 的 AFM-IR 测量可提供亚囊泡空间分辨率的尺寸信息和中红外光谱。接收到的光谱与本体参考光谱相比更为有利
有研究表明,对抗大生物体免疫因素的防御是通过形成对革兰氏阳性菌有溶解作用的膜囊泡来实现的,而这反过来可能导致微生物产生抗生素耐药性。金黄色葡萄球菌 ( S. aureus ) 是引起糖尿病足综合征 (DFS) 的常见病原体。我们描述了抗生素耐药性以及溶解囊泡作为金黄色葡萄球菌分离株和金黄色葡萄球菌参考菌株培养物中抗生素耐药性的作用。此外,我们使用枯草芽孢杆菌 ( B. subtilis ) 来确定囊泡在 36 名不同年龄的缺血性和混合性 DFS 患者中的溶解作用。这项研究的结果是,我们发现膜囊泡具有溶解作用,在金黄色葡萄球菌参考菌株及其临床分离株的囊泡周围以及枯草芽孢杆菌参考菌株的囊泡周围均形成了溶解区。在编码对多种抗生素耐药性的基因中,16.7%的临床菌株检测到blaCTX-M-2基因,11.1%的菌株检测到Erm和Tet基因,5.5%的菌株检测到Mec-1基因,5.5%的菌株检测到VanA和VanB基因。5.5%的菌株还检测到了质粒介导的喹诺酮类药物耐药基因qnrB。同时,11.1%的金黄色葡萄球菌临床菌株检测到多重耐药。进一步的研究应分析所述基因对粘附和膜囊泡形成的贡献及其在DFS患者和其他来源的伤口和感染的伤口愈合发病机制中的意义。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 10 月 28 日发布。;https://doi.org/10.1101/2022.12.28.522113 doi:bioRxiv 预印本
肥胖症和 II 型糖尿病等代谢疾病以胰岛素抵抗为特征 1,2。下丘脑弓状核 (ARC) 内的细胞对于调节代谢至关重要,在代谢疾病进展过程中,它们会产生胰岛素抵抗 3–8,但这些机制尚不完全清楚。我们在此研究了一种特殊的硫酸软骨素蛋白聚糖细胞外基质(称为神经元周围网)的作用,它包围着 ARC 神经元。在代谢疾病中,ARC 的神经元周围网会增强和重塑,从而导致胰岛素抵抗和代谢功能障碍。通过酶促或小分子破坏肥胖小鼠的神经元周围网,可改善胰岛素进入大脑,逆转神经元胰岛素抵抗并增强代谢健康。我们的研究结果发现,ARC 细胞外基质重塑是驱动代谢疾病的基本机制。
肌成纤维细胞沉积 ECM 会导致适应不良的组织重塑和器官衰竭。纤维化是几乎所有器官损伤的共同最终途径,被认为是工业化世界中高达 45% 的死亡原因 (1) ,代表着一种迫切且未得到满足的临床需求。肌成纤维细胞在损伤后会扩张,被认为是纤维形成过程中 ECM 的主要来源。虽然谱系命运追踪和单细胞 RNA 测序 (scRNA-seq) 技术有助于阐明(肌)成纤维细胞的个体发育,但它们也发现了迄今为止意想不到的成纤维细胞异质性程度,超出了传统的成纤维细胞至肌成纤维细胞的分化范式 (1–4) 。然而,这些新发现的成纤维细胞亚群仍然定义不清,包括驱动其分化的分子线索和它们在纤维形成过程中的确切作用。我们最近发现,一小部分血管周围细胞群(以转录因子 Gli1 为标志)是器官中肌成纤维细胞库的主要贡献者 (5, 6)。损伤后,Gli1 + 细胞会扩张,从血管周围微环境迁移到间质中,并分化为肌成纤维细胞。
蛋白水解靶向嵌合体 (PROTAC) 是一种新兴的癌症靶向治疗方法,但由于细胞靶向性和穿透性较差以及体内不稳定性,PROTAC 的广泛临床应用受到限制。为了克服这些问题并提高 PROTAC 药物的体内疗效,开发了基于微流控液滴的电穿孔 (µDES) 作为一种新型细胞外囊泡 (EVs) 转染系统,可实现高效的 PROTAC 装载和体内有效递送。我们之前开发的 YX968 PROTAC 药物已显示出对 HDAC3 和 8 的选择性降解,通过双重降解有效抑制乳腺肿瘤细胞系(包括 MDA-MB-231 三阴性乳腺癌 (TNBC) 系)的生长,而不会引起整体组蛋白高乙酰化。在本研究中,我们证明基于 µDES 的 PROTAC 在 EVs 中的装载显着增强了 PROTAC 药物在 TNBC 乳腺肿瘤小鼠模型中的体内治疗功能。 NSG 小鼠已建立 MDA-MB-231 肿瘤,并通过腹膜内注射 EVs 进行肿瘤抑制研究,结果显示 HDAC 3 和 8 降解效率和肿瘤抑制率明显高于仅使用 PROTAC 的组。收集肝脏、脾脏、肾脏、肺脏、心脏和脑进行安全性测试,结果显示毒性有所改善。PROTAC 药物的 EV 递送提高了药物在体内的稳定性和生物利用度、可运输性和药物靶向能力,填补了 PROTAC 治疗功能在体内和临床转化中当前发展的重要空白。这种基于 EV 的新型药物转染和递送策略可应用于各种疗法,以增强体内递送、功效和安全性。
在基因组医学时代,转基因的递送已成为遗传疾病和癌症精确细胞疗法的组成部分1。例如,使用病毒和非病毒递送平台的嵌合抗原受体(CAR)T细胞(一种用于治疗B细胞恶性肿瘤的收养细胞疗法)是在体内生产的(在体内),将CAR遗传构建体引入T细胞2。在细胞内部,将CAR基因转化为CAR蛋白,武装T细胞,能够靶向和消除癌细胞,一旦转移回体内。有效地制造了CAR T细胞和类似的细胞疗法在克服细胞递送的生物学障碍中的性能的性能方面取决于3。输送平台及其封装的货物被细胞通过内吞作用4捕获4。这些途径已被证明对生物物理线索敏感,例如剪切应力,细胞外基质刚度和生理环境中的液压敏感5-7。现在,在自然化学工程中报告,硕士,Zhu和同事将细胞外流体粘度确定为介导
