关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
摘要:微电极阵列(MEA)允许通过感应:细胞外动作电位和(体内)局部场电位来监测数千个神经元/mm 2。MEAS在空间网格中排列了几个记录位点(或像素),并与电体内细胞培养物和/或集成在电皮质学网格中。This paper focuses on Electrolyte-Oxide MOS Field-Effect-Transistors (EOMOSFET) MEAs for cell- level recording and presents a complete model of the neuron-electronics junction that reduces to a single electrical scheme all the biological (the neuron) and physical layers (the electrolyte, the Diffuse/Helmoltz capacitances, the oxide and the MOS transistor) composing the interface.这允许预测来自生物环境(电解质浴)的噪声功率,并优化所有电源参数的主要目的,以最大程度地降低最终的感应噪声图,从而增强采集信噪比比率。频域模拟来自提议的模型表明,在构建EOMOSFET像素中涉及的所有参数都有一个最佳设计点,该参数允许在<12 µV rms <12 µV RMS <12 µV RMS的信号对噪声比例进行> 9 dB的信噪比。这最终将使通过电解质裂口流动的超湿神经电位信号的高分辨率记录,这些信号从未探索过采用平面电容耦合接口。
摘要:缺血性中风是全球残疾和死亡率的重要贡献者,在当前临床环境中缺乏有效的治疗方法。神经干细胞(NSC)是一种仅在神经系统内部发现的干细胞。这些细胞可以分化为各种细胞,可能在大脑被破坏的区域内再生或恢复神经网络。本综述首先提供了缺血性中风的现有治疗方法的介绍,然后检查与使用NSC治疗缺血性中风相关的承诺和限制。随后,进行了全面的概述,以综合有关在缺血性中风的背景下神经干细胞衍生的小细胞外囊泡(NSC-SEVS)移植疗法的现有文献。这些机制包括神经保护,炎症反应抑制以及内源性神经和血管再生的促进。尽管如此,NSC-SEV的临床翻译受到挑战,例如靶向功效不足和内容负载不足。鉴于这些局限性,我们已经根据当前的细胞外囊泡修饰方法来概述了利用改良的NSC-SEVS来治疗缺血性中风的进步概述。总而言之,研究基于NSC-SEVS的治疗方法预计在有关缺血性中风的基本和应用研究中都是突出的。关键词:神经干细胞,小囊泡,缺血性中风,神经保护,神经再生
细胞外基质(ECM)是嵌入神经系统各种细胞的蛋白质和糖的密集且动态的网络。它由许多大分子组成,例如胶原蛋白,弹性蛋白,纤维蛋白,层粘连蛋白,糖蛋白,如Tenascin,Glycosaminoglycans(GAGS)和蛋白聚糖。这些成分由神经元和神经胶质细胞分泌。它占大脑量的20%,但尚未受到神经科学研究社区的要求。到目前为止,大多数研究重点都放在神经元或神经胶质细胞成分上。细胞外系统在脑部疾病的病因和进展中的作用,反之亦然,神经系统疾病如何影响细胞外基质的影响仍然很大程度上没有探索。已知ECM在神经发育过程中起多种作用,但是其在人脑的发展中的作用尚未完全了解。由周围神经元网(PNN)组成的凝结ECM形成细胞体周围的网状结构和神经元近端神经突(Sigal等,2019)。在神经系统开发过程中,ECM调节神经祖细胞的增殖和不同。它还控制细胞形态,包括轴突和树突伸长,调节其连通性和皮质折叠。此外,ECM还存储了创建微域以调节神经元迁移和突触可塑性的信号因子(Dityatev等,2010; Dick等,2013)。PNN被认为充当分子制动,可关闭和调节突触可塑性的关键时期(Dityatev等,2010; Wang和Fawcett,2012)。因此,ECM功能障碍,尤其是PNN损伤与几种神经发育障碍有关,例如自闭症谱系障碍,精神分裂症,双相障碍,易碎X综合征和癫痫病(Reinhard等,2015; Rogers等,2015; Rogers等; Rogers等,2018; Wen et al。,2018)。关于神经退行性疾病的数十年研究表明,神经元死亡增加了,但神经元不良健康背后的机制远非明显。尚未详细研究垂死细胞周围额外细胞基质的功能和功能。最近,在帕金森氏病啮齿动物模型中报道了神经变性,额外的细胞空间和基质之间的相互作用,该模型在被忽视的隔室中散发出灯,以分散聚集的α-舌核蛋白种子(Soria等,2020)。正如Pinter和Alpar最近回顾的那样,选择性ECM组件可以主动触发特定于疾病的有毒物质,或在ECM中反应地积累它们(Pinter and Alpar,2022)。几项研究已关联
对于 ST 段抬高型心肌梗死 (STEMI) 患者,梗死扩大是死亡率和心力衰竭的预后决定因素[1]。梗死的最终大小取决于再灌注无法挽救的缺血区域和再灌注本身造成的损伤,即缺血-再灌注 (IR) 损伤 [2,3]。由于减少缺血性损伤的策略可能会改善 STEMI 患者的预后,因此有必要识别预后生物标志物并加强对缺血性损伤的病理生理机制的理解,以揭示 STEMI 的新治疗策略。心脏细胞外基质 (ECM) 的有害变化似乎与心肌缺血性损伤有关,这可能通过诱发炎症、造成微血管功能障碍和加剧心脏重塑来促进梗死面积扩大 [4]。在心肌梗死 (MI) 的急性期,临时 ECM 的形成促进免疫细胞浸润和成纤维细胞的激活 [5],而血管内壁的 ECM 则与冠状动脉微血管损伤和阻塞有关 [6]。在心肌梗死后心肌的后期,ECM 的积聚不仅会取代梗死区域的坏死心肌细胞,还会在边缘区和存活心肌中产生纤维化,导致心脏功能恶化 [7]。如果参与这些 ECM 变化的蛋白质溢出到循环系统,它们可能成为缺血性损伤的循环标志物。为了确定与缺血性损伤相关的生物标志物,我们对因 STEMI 入院患者血清样本中的一组与 ECM 变化相关的生物标志物进行了量化。我们选择了一组已知参与炎症、纤维化和 ECM 重塑的蛋白质,这些蛋白质与转化生长因子 β (TGF- β ) 的活性有关,并可用于适当的检测方法。选定的标志物是骨桥蛋白 [ 8 ]、骨膜蛋白 [ 9 ]、syndecan-1 [ 10 ]、syndecan-4 [ 11 ]、骨形态发生蛋白 (BMP)-7 [ 12 ] 和生长分化因子 (GDF)-15 [ 13 ]。由于 TGF- β 是梗死后炎症和纤维化 ECM 重塑的关键调节因子 [ 14 , 15 ],我们假设这些 ECM 相关蛋白可能与 MI 后的缺血性损伤程度和结果有关。事实上,在患有急性冠状动脉综合征和循环中 GDF-15 [ 16 ]、syndecan-1、骨膜蛋白和骨桥蛋白水平升高的患者中观察到了不良临床结果 [ 17 - 19 ],而在患有 MI 的患者中观察到了 syndecan-4 水平升高 [ 20 ]。然而,关于它们与心肌缺血损伤的关系的知识有限。缺血性损伤通过心脏磁共振 (CMR) 进行评估,包括梗死大小和左心室 (LV) 尺寸和功能,以及微血管阻塞 (MVO) 和心肌挽救指数 (MSI) 作为 IR 损伤的参数。因此,本研究的目的是探索 STEMI 后急性期和慢性期测量的选定生物标志物与 1) 通过 CMR 成像评估的心肌缺血损伤和心脏功能以及 2) 长期死亡率之间的潜在关联。
摘要:细胞外囊泡(EV),包括外泌体和微泡,是几乎所有细胞类型的小膜结构。它们已经成为细胞间交流中的关键介体,在各种生理和病理过程中扮演着关键的角色,尤其是在免疫领域内。这些角色超越了细胞相互作用,因为细胞外囊泡作为免疫调节的多功能和动态成分,影响了先天和适应性免疫。他们的多方面参与包括免疫细胞的激活,抗原释放和免疫调节,强调了它们在维持免疫稳态中的重要性,并有助于免疫相关疾病的发病机理。细胞外囊泡通过传递多种生物活性分子(包括蛋白质,脂质和核酸)来参与免疫调节,从而影响靶细胞中的基因表达。本手稿提出了一项全面的综述,涵盖了体外和体内研究,旨在阐明EV调节人类免疫力的机制。了解细胞外囊泡与免疫力之间的复杂相互作用对于揭示适用于各种免疫疾病的新型治疗靶标和诊断工具,包括自身免疫性疾病,感染性疾病和癌症。此外,确认电动汽车的潜力是多功能药物输送车,对免疫疗法的未来具有重要的希望。
大量研究表明,间充质基质细胞 (MSC) 有助于骨修复 1、骨骼肌再生 2-4 和软骨再生。5 尽管 MSC 和干细胞 (SC) 疗法作为修复、再生或最大程度减少肌肉骨骼组织损失的手段引起了广泛的热情,但它们对兽医和人类患者中骨关节炎 (OA) 和其他肌肉骨骼疾病等特定疾病的临床疗效仍有些模糊。几个问题导致了关于 SC 临床疗效的相互矛盾的观点。例如,实际上没有关于什么是 SC 疗法的标准临床定义。 “干细胞疗法”一词用于描述多种基于细胞的疗法,指富含干细胞但含有其他细胞群(例如骨髓抽吸物浓缩物和脂肪基质血管部分)的浓缩物、培养扩增并分离为纯多能细胞群的纯化基质细胞,甚至富含血小板的血浆浓缩物。基于细胞的疗法可能来自患者自身组织(自体)或来自供体(同种异体),并且可以从成人或青少年个体中分离。最后,干细胞治疗的具体作用机制和相对疗效高度依赖于供体物种、组织来源、分离方法
细胞外陷阱是网状结构,由染色质 DNA 丝、组蛋白和颗粒蛋白组成。它们在受到炎症细胞(例如中性粒细胞、单核细胞、嗜酸性粒细胞、肥大细胞和巨噬细胞)刺激后与炎症介质和病原体一起释放。细胞外陷阱的产生和激活是一种免疫防御机制,有助于炎症的发展、免疫高反应性、血流动力学改变、内皮屏障功能和诱导肿瘤微环境异质性。中性粒细胞细胞外陷阱 (NET) 由中性粒细胞释放,以在 DNA 排出(NETosis)过程中捕获和消除病原体,DNA 排出是中性粒细胞死亡的一种受调控形式。NET 的产生和 NETosis 的形成被认为是一个进化过程,其中的紊乱和失调可导致大量疾病。临床前研究表明,NET 和 NETosis 可能在炎症、感染的发病机制中发挥关键作用。