其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
eds是Zr 0。97 SI 1。 08 S 0。 95,非常接近名义值。 底部插图显示典型97 SI 1。08 S 0。 95,非常接近名义值。 底部插图显示典型08 S 0。95,非常接近名义值。底部插图显示典型
fermions的合理量子信息理论必须尊重平价超级选择规则,以遵守相对论和无信号原则的特殊理论。该规则限制了任何量子状态在偶数和奇数式典型状态之间具有叠加的可能性。因此,它表征了一组物理允许的费米子量子状态。在这里,我们将物理允许的量子操作介绍了与奇偶校验超级选择规则一致的量子操作,该操作将允许的费米子状态映射到自身上。我们首先引入了费米金国家的统一和投射测量操作。我们将形式主义进一步扩展到一般量子操作,以STINESPRING膨胀,操作员-AM表示形式和公理性完全阳性跟踪的地图的形式。我们明确显示了费米子量子操作的这三个表示之间的等效性。我们讨论了我们在费米子系统中相关性表征的结果的可能含义。
我们提出了一个量子自测试协议来认证涉及马约拉纳费米子模式的费米子宇称测量。我们表明,观察到一组理想测量统计数据意味着实施的马约拉纳费米子宇称算子的反交换性,这是马约拉纳检测的必要先决条件。我们的协议对实验误差具有鲁棒性。我们获得了与误差呈线性关系的状态和测量算子的保真度下限。我们建议根据语境见证 W 来分析实验结果,对于任何经典数据概率模型,它都满足 ⟨ W ⟩≤ 3。不等式的违反证明了量子语境性,与最大理想值 ⟨ W ⟩ = 5 的接近程度表示对马约拉纳费米子检测的置信度。
人们普遍认为,量子力学中只有两种类型的粒子交换统计数据,即费米子和玻色子,二维中的任意子除外 1–5 。原则上,第二种例外被称为准统计数据,它延伸到二维之外,曾被视为 6 但被认为在物理上等同于费米子和玻色子 7–9 。本文我们表明,物理系统中可以存在与费米子或玻色子都不等价的非平凡准统计数据。这些新型全同粒子遵循广义不相容原理,从而产生不同于任何自由费米子和玻色子的奇异自由粒子热力学。我们通过开发准粒子的第二种量化来制定我们的理论,该量化自然包括完全可解的非相互作用理论并结合局部性等物理约束。然后,我们构建了一维和二维的精确可解量子自旋模型系列,其中自由准粒子以准粒子激发的形式出现,它们的交换统计数据可以在物理上观察到,并且与费米子和玻色子明显不同。这表明凝聚态系统中可能存在一种新型准粒子,而且从更推测的角度来看,可能存在以前未考虑过的基本粒子类型。
复合费用理论提供了一个简单且统一的图片,以了解量子厅制度中的大量现象学。然而,在单个Landau级别中正确提出这一概念仍然充满挑战,这在强磁场的极限下提供了相关的自由度。最近,在Landau级填充因子ν= 1的玻色子的低能量非交通局部理论已由Dong和Senthil [Z. Dong和T. Senthil,物理。修订版b 102,205126(2020)]。在长波长和小振幅量规的极限中,他们发现它减少了复合效率液体的著名的Halperin-Lee阅读理论。在这项工作中,我们考虑了总填充因子ν=1。与以前的工作不同,可以通过更改玻色子的填充因子来调节混合物中复合费米的数量密度,νB= 1 -νf。这种可调节性使我们能够研究稀数极限νb≪1,从而可以对能量分散剂和复合费米子的有效质量进行受控且渐近的精确计算。此外,通过合理的场理论对低能量描述的近似显然是合理的。最重要的是,我们证明,由于存在复合玻色子冷凝物,量规的弹性获得了希格斯的质量,因此该系统的行为就像真正的landau-fermi液体。与稀有极限中的四边形相互作用无关,我们能够获得该复合费米子费米液体的渐近确切特性。在νf ≪1的相对极限中,希格斯质量为零,随着温度升高,我们发现费米液体和非芬米液体之间的交叉。在实验或数值上观察这些特性不仅提供了不仅是复合费米子及其形成的费米表面的明确证据,而且还提供了由于强相关性而引起的新出现的量规场及其爆发。
我们研究了在锤子图上定义的自由屈服模型的基础状态下的多部分信息和纠缠措施。使用邻接矩阵的已知对角线化,我们解决了模型并构建了基态相关矩阵。此外,当子系统由嵌入在较大较大的n个分离的子系统组成时,我们发现切碎相关矩阵的所有特征值。这些结果允许我们找到一个确切的公式,用于隔离图的纠缠熵以及相互和三方信息。我们使用这些措施的确切公式在两个不同的热力学限制中提取其渐近行为,并与数值计算相匹配。尤其是,我们发现纠缠熵承认对数违反该地区法的行为减少了与区域法规模相比的纠缠数量。©2023作者。由Elsevier B.V.这是CC根据许可证(http:// creativecommons .org /licenses /by /by /4 .0 /)的开放访问文章。由SCOAP 3资助。
该模型的厄米性保证了具有实特征值的能量守恒,但当量子系统与其环境交换粒子和能量时,该模型的厄米性就会失效。这种开放的量子系统可以用非厄米哈密顿量有效地描述,为量子信息处理、弯曲空间、非平凡拓扑相甚至黑洞提供了重要的见解。然而,许多关于非厄米量子动力学的问题仍未得到解答,尤其是在高维空间中。
我们从自由费米子的角度研究变异量子算法。通过设计相关的LIE代数的明确结构,我们表明,量子相比优化算法(QAOA)在一维晶格上 - 具有脱钩角度 - 具有脱钩的角度 - 能够准备所有符合电路符号的费米斯高斯州的状态。利用这些宗教信仰,我们在数值上研究了这些对称性和目标状态的局部性之间的相互作用,并发现缺乏符号的情况使非局部状态更容易预先预测。对高斯状态的有效的经典模拟,系统尺寸高达80和深电路,用于研究电路过度参数化时的行为。在这种优化方案中,我们发现迭代的迭代数与系统大小线性线性缩放。更重要的是,我们观察到,与溶液收敛的迭代次数会随电路深度呈指数降低,直到它以系统尺寸为二次的深度饱和。最后,我们得出的结论是,可以根据梯度提供的更好的局部线性近似图来实现优化的改进。
2 平衡单粒子格林函数 9 2.1 格林函数的定义.....................................................................................................................................................................................................................................9 2.2 松原格林函数的性质....................................................................................................................................................................................................................................10 2.2.1 周期性和傅里叶级数....................................................................................................................................................................................................................10 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................. 17 2.4.1 莱曼表示.................................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................................... 17 20 2.4.3 松原频率求和....................................................................................................................................................................................................................20 2.5 2 粒子相关函数....................................................................................................................................................................................................................................................................21