增加散热片面积和通过散热的通风量,可以提高散热器的冷却性能。实际上,如果散热片数量过多,散热器的负荷(通风阻力)就会上升,与散热片较少的散热器相比,通风量就会减少。此外,负荷大时,噪音也会增大。本产品的散热器通过优化芯体厚度和散热片间距,实现了冷却性能和噪音之间的平衡。
通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度进一步缩小,从而缩小了接触多晶硅间距 (CPP)。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电性能的新结构(例如插入氧化物鳍式场效应晶体管 (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
摘要 蛇类是一种独特的渔业产品,因为目测很难区分。只有准确鉴别,才能有效地保护它们。本研究旨在确定来自印度尼西亚巴纽旺宜和沙特阿拉伯吉赞的蛇类的形态和分子特征。形态学鉴定采用计数和形态测量分析,分子鉴定采用 COI 基因分析。本研究中采用形态学分析来识别蛇类,例如 S. tumbil(沙特阿拉伯吉赞)和 S. micropectoralis(印度尼西亚巴纽旺宜)。S. tumbil 在侧线和上尾鳍上没有深褐色斑点,而 S. micropectoralis 在这些部位有 6–9 个斑点。S. tumbil 体型较大,肠道为白色,背鳍棘更多,胸鳍可延伸至腹鳍。而 S. micropectoralis 则不同,它的体型较小,肠道呈黑色,背鳍棘少,胸鳍距离腹鳍较远。分子鉴定显示,来自 Jizan 的样品 100% 为 S. tumbil,来自 Banyuwangi 的样品 99.84% 为 S. micropectoralis。形态学和分子特征可结合起来进行蛇类鉴定,以避免在今后的研究中出现错误鉴定。关键词:爪哇海,分子,形态学,蛇类,红海引言蛇类是除了 Harpadon、Synodus 和 Trachinocephalus 之外的 Synodontidae 科的一个属[1]。这种鱼可以在印度-西太平洋大陆架找到[2]。蛇类身体形态细长圆形,头部形状像蜥蜴[3–4]。由于价格便宜、味道好,蛇鲹被广泛食用[5]。即使在伊朗或马来西亚等其他国家,蛇鲹也被制成鱼糜食用[6]。蛇鲹不仅可用于食用,还可用于食品和制药行业[7]。与保护相关的研究对于了解蛇鲹的生物多样性和保护它们免受人类活动的威胁非常重要。在沙特阿拉伯,过去二十年里,红海沿岸水域的蛇鲹年均捕捞量为 172.45±31.6 吨,并开始出现过度开发
•CSC 325中的“ C”等级 - 管理信息系统,FIN 310-企业融资,HRM 460-人力资源管理 - 人力资源管理,MGMT 360-组织和管理以及BADM 485-战略管理•如果学生选择通过管理和经济学的第二个专业人士(经济学,农业商业,企业,农业)的第二大专业,则是两倍的专业,至少有15个学分与第一个专业不同。