1 简介 AM 工艺从选择部件和确定部件要求开始。完成此操作后,设计过程从创建 CAD 文件(称为 STL(标准镶嵌语言))开始,该文件广泛用于快速原型和计算机辅助制造,然后是 AM 设备的 CAM 刀具路径。在流程的另一端,根据部件的属性要求确定合适的构建材料(粉末或线材形式)。接下来,选择适当的 AM 工艺参数,并将数据上传到机器。然后,逐层构建部件,一次创建一层(Dutta 和 Froes,2015 年;Froes 和 Dutta,2014 年)。完成该过程后,根据部件规格对部件进行清洁、应力消除或热处理。最后,拆除平台和支撑结构,然后根据要求对部件进行精加工
摘要。印刷电路板 (PCB) 是环氧树脂浸渍和固化的反编织玻璃纤维 (例如 FR4) 板,层压在薄铜板之间。PCB 的性质本质上是各向异性和不均匀的,但之前的 PCB 模态 FEM 假设了各向同性、各向异性 (横向各向同性和正交各向异性) 材料特性,并显示出与特定场景的测试数据有良好的相关性 [1-3]。本文详细介绍了一项研究计划的一部分,旨在更好地理解如何准确模拟 PCB 的动态行为。分析了材料各向异性的影响的新研究,特别是材料正交平面定义 (𝐸 ௫ 和 𝐸 ௬ ) 对特征频率的影响。使用 Steinberg 完善的理论和其他人的经验数据 [4, 5] 创建、验证和确认了 JEDEC PCB 的模态 FEM。使用参数模态 FEM 检查了 𝐸 ௫ 、𝐸 ௬ 和 𝐸 ௭ 对 PCB 特征频率的相对贡献,分析了材料各向同性和各向异性的作用。还分析了典型 JEDEC PCB 的横向各向同性材料特性的影响。此分析详细说明了准确建模 PCB 特征频率所需的网格密度。结果表明,𝐸 ௭ 增加 100% 只会导致特征频率差异 0.2%,而 𝐸 ௬ 增加 100% 会导致特征频率差异 1.2%。正交各向异性平面定义(交替使用 𝐸 ௫ 和 𝐸 ௬ )对 JEDEC PCB 的影响使特征频率发生了 7.95 % 的偏移。
抽象的氘融合反应以14.1 MeV中子的形式产生能量,因此,融合反应器成分将暴露于高能量中子辐照的情况下,同时也受到热,机械和磁负荷的影响。暴露于中子辐射会带来许多后果,包括肿胀和尺寸变化,与等离子成分中发生的峰值瞬态热变形相当。辐照还以强烈的非线性方式动态改变了各种热机械特性,温度,应力和肿胀。有关跨越设计参数空间的中子暴露影响的实验数据非常稀疏,这突出了计算机模拟的相关性。在这项研究中,我们探讨了体力/表面牵引方法与特征性形式主义之间的等效性,用于治疗各向异性辐射引起的肿胀。我们发现,用于有限元方法(FEM)模拟的商业和大规模并行的开源软件都适合评估中子暴露对机械载荷反应器组件的影响。我们证明了辐射,辐射肿胀和导热率的降解的两个主要影响如何影响ITER TOKAMAK分流中应力和温度的分布。表征肿胀幅度和治疗模型的明显不确定性表明,基于目前可用的数据,只能给出反应堆成分中最受辐射的反应堆组件中发生的压力估算。
我们引入了一种量子信息理论启发的方法来改进近期量子设备上多体汉密尔顿量的表征。我们设计了一类新的相似变换,当将其作为预处理步骤应用时,可以大大简化汉密尔顿量,以便在量子硬件上进行后续分析。根据设计,可以使用纯经典资源有效地识别和应用这些变换。在实践中,这些变换使我们能够缩短必要的物理电路深度,克服不完善的近期硬件所施加的限制。重要的是,我们的变换质量是可调的:我们定义了一个变换“阶梯”,以更经典的计算为代价产生越来越简单的汉密尔顿量。使用量子化学作为基准应用,我们证明我们的协议可以显著提高数字和模拟量子硬件上零温度和有限温度自由能计算的性能。具体来说,我们的能量估计不仅优于传统的 Hartree-Fock 解决方案,而且随着我们调整转换质量,这种性能差距也在不断扩大。简而言之,我们基于量子信息的方法为在近期硬件上实现有用且可行的量子化学算法开辟了有希望的新途径。量子化学的一个核心任务是确定电子汉密尔顿量的基态能量和有限温度自由能。虽然许多算法旨在利用量子硬件来解决问题 [ 21 , 31 , 47 , 48 ],但近期硬件的限制,尤其是有限的电路深度,带来了挑战。解决这一难题的一种方法是
摘要。曲轴是内燃机的关键部件之一,需要有效和精确的工作。在本研究中,研究的目的是识别曲轴中的应力状态,并通过有限元分析解释汽车曲轴的故障和曲轴的疲劳寿命。使用 SolidWorks 设计和开发曲轴模型的 3D 实体造型。对 L 型双缸曲轴进行静态结构和动态分析,以确定曲轴关键位置的最大等效应力和总变形。使用疲劳工具在动态载荷条件下对模型进行测试,以确定疲劳寿命、安全系数、等效交变应力和损伤。本研究的结果表明,曲轴有明显的疲劳裂纹,属于疲劳断裂。疲劳断裂的发生只是由于在循环弯曲和扭转作用下润滑孔边缘的扩展和起始裂纹所致。总体而言,曲轴在静态和疲劳载荷下都是安全的。在动态分析中,应避免频率响应曲线中获得的临界频率,否则可能会导致曲轴失效。
船舶结构中平面内受载加强筋的破坏将导致相邻板材同时屈曲。DMEM10(加拿大军队水面战舰结构设计)和NES 110(英国国防部海军工程标准)评估加筋板的极限强度,即通过在极限板材抗压强度曲线和柱强度曲线之间进行迭代获得极限承载能力。目前,极限板材抗压强度是根据Faulkner有效宽度方程得出的,而加强筋和板材的组合强度则通过Bleich抛物线来评估。抛物线的原始推导仅考虑了材料的非弹性,而没有考虑缺陷。Smith等人根据有限元结果推导出小缺陷、平均缺陷和大缺陷的柱强度曲线集。这些结果以数据表格式呈现在SSCP23(英国国防部水面舰艇结构设计)中。将传统程序的极限强度与 SSCP23 中的设计曲线进行比较,发现存在很大差异。采用有限元分析(包括缺陷和残余应力的影响)来研究这些差异。为了在设计程序中提供替代方案,还研究了土木结构和海上建筑标准中的一些相关规定。
摘要。曲轴是内燃机的关键部件之一,需要高效、精确地工作。本研究的目的是通过有限元分析确定曲轴中的应力状态,并解释汽车曲轴的故障和曲轴的疲劳寿命。使用 SolidWorks 设计和开发了曲轴模型的 3D 实体造型。对 L 型双缸曲轴进行静态结构和动态分析,以确定曲轴关键位置的最大等效应力和总变形。使用疲劳工具在动态载荷条件下测试模型,以确定疲劳寿命、安全系数、等效交变应力和损伤。本研究的结果表明,曲轴有明显的疲劳裂纹,属于疲劳断裂。疲劳断裂的发生仅归因于在循环弯曲和扭转下润滑孔边缘的扩展和起始裂纹。总体而言,曲轴对于静态和疲劳载荷都是安全的。在动力学分析中,应避开频响曲线中得到的临界频率,否则可能造成曲轴失效。
自我测试是从铃铛测试结果认证设备的一种方法。尽管已知噪声耐受性自我测试的示例,但尚不清楚如何有效地处理有限数量的实验试验,以证明设备的平均质量而不假设每次运行的行为相同。因此,存在有限统计数据的自我测试结果受到限制,以确保仅在所有经验试验之一中进行设备的适当工作,从而限制其实践适用性。我们在这里得出了一种通过自我测试来证明的方法,即,在每次运行中,副本平均产生的状态平均在靠近钟状态下,而没有假设。因此该方法不含I.I.D。(独立和分布)假设。将此新分析应用于最近无漏洞的铃铛实验中的数据,我们将在398米以上成功分布,平均意义在99%的承认水平下平均效率≥55.50%。是基于无检测和局部漏洞的铃铛测试,我们的技术显然是与设备无关的,也就是说,它不依赖于对设备的信任或对设备的工作方式的了解。这可以保证我们的链接可以集成到量子网络中,以通过安全保证独立于实际进度的细节来驱动长距离量子通信。
摘要。在本文中,我们提出了一种有效的指数积分有限元方法,用于求解矩形域中的一类半线性抛物线方程。提出的方法首先使用具有连续的多线矩形基函数的有限元近似进行模型方程的空间离散化,然后采用明确的指数runge-kutta方法,用于产生半差异系统的时间集成,以产生全diScrete的数值解决方案。在某些规律性假设下,在h 1 -norm中测得的错误估计值是成功得出的,该方案具有一个和两个RK阶段。更值得注意的是,该方法的质量和系数可以用正交矩阵同时对角线,该基质提供了基于张量的乘积谱分解位置和快速傅立叶变换的快速溶液过程。还进行了两个维度和三个维度的各种数值实验,以验证理论结果并证明该方法的出色性能。
BARYON数量波动的累积物是在有限密度下实验探索QCD相图的良好探针,从而产生与可能的临界端点(CEP)相关的特征波动模式。我们使用全息QCD模型来计算有限温度和重型化学电位的高阶重子数敏感性,以解决强耦合QCD物质的非扰动方面。该模型可以在定量水平上准确面对晶格QCD数据,并且发现CEP的位置落在即将进行的实验测量的范围内。计算到第十二阶的重子数敏感性,并沿化学冷冻线检查了这些敏感性不同比率的碰撞能量依赖性。全息结果显示与实验数据的定量一致性,功能重新归一化组导致较大的碰撞能量范围,所有比率均显示出峰值结构约为5-10 GEV。我们的全息结果与实验数据之间的不匹配是由于非平衡效应和复杂的实验环境所致。未来通过低碰撞能量范围内测量的实验√sN≈1-10GEV和降低的实验不确定性可能会揭示更多的非单调行为信号,这些信号可用于定位CEP。