我们引入了一种量子信息理论启发的方法来改进近期量子设备上多体汉密尔顿量的表征。我们设计了一类新的相似变换,当将其作为预处理步骤应用时,可以大大简化汉密尔顿量,以便在量子硬件上进行后续分析。根据设计,可以使用纯经典资源有效地识别和应用这些变换。在实践中,这些变换使我们能够缩短必要的物理电路深度,克服不完善的近期硬件所施加的限制。重要的是,我们的变换质量是可调的:我们定义了一个变换“阶梯”,以更经典的计算为代价产生越来越简单的汉密尔顿量。使用量子化学作为基准应用,我们证明我们的协议可以显著提高数字和模拟量子硬件上零温度和有限温度自由能计算的性能。具体来说,我们的能量估计不仅优于传统的 Hartree-Fock 解决方案,而且随着我们调整转换质量,这种性能差距也在不断扩大。简而言之,我们基于量子信息的方法为在近期硬件上实现有用且可行的量子化学算法开辟了有希望的新途径。量子化学的一个核心任务是确定电子汉密尔顿量的基态能量和有限温度自由能。虽然许多算法旨在利用量子硬件来解决问题 [ 21 , 31 , 47 , 48 ],但近期硬件的限制,尤其是有限的电路深度,带来了挑战。解决这一难题的一种方法是
主要关键词