图3连续氯胺酮输注后WM的重大变化。在连接时间,枕骨和边缘区域的区域中观察到NDI的显着降低,包括左后丘脑辐射,左下纵向筋膜,以及内囊的左后角区域。(a)NDI显着降低的WM区域的多切片视图,在MNI-152 T1W脑上覆盖了每个切片视图的MNI坐标。更明亮的颜色表示更大的意义。(b)使用显着的WM道作为统计ROI,在每个受试者的氯胺酮处理前后,在此ROI中计算了平均NDI值。每个时间点的箱形图显示了平均NDI值的分布,在两个时间点上连接受试者的线显示在氯胺酮治疗后每个受试者的平均NDI变化(蓝色=减少,红色=增加)。a p -value(6.3e -08)来自配对的t检验comapring在ROI内的平均NDI随时间变化的平均变化在框图上方列出。ndi,神经突密度指数; ROI,感兴趣的地区; WM,白色物质
肺癌是癌症相关死亡的主要原因,每年全球约有 176 万人死于肺癌。间变性淋巴瘤激酶 ( ALK ) 和 c-ROS 致癌基因 1 ( ROS1 ) 基因融合是非小细胞肺癌 (NSCLC) 中公认的关键因素。尽管它们的发生频率相对较低,但它们的检测对于治疗决策和靶向治疗的实施至关重要。用于检测它们的公认方法是免疫组织化学 (IHC) 和荧光原位杂交 (FISH) 检测,以及基于 DNA 和 RNA 的测序检测。在这里,我们提出了一种基于图像的解决方案,可直接从苏木精和伊红 (H&E) 染色的病理切片图像进行分子分析。
Cas9 以高特异性靶向基因组位点。然而,当用于敲入时,Cas9 通常会导致非预期的靶向敲除,而不是预期的编辑。这种不精确性是无法进行克隆选择的直接体内编辑的障碍。在这里,我们展示了一种高通量工作流程,以比率方式评估编辑结果的靶向效率和精度。使用这种工作流程,我们筛选了供体 DNA 和 Cas9 变体的组合,以及与 DNA 修复蛋白的融合。这产生了新的高性能双链断裂修复编辑剂和组合优化,敲入精度提高了几个数量级。Cas9-RC 是一种与 eRad18 和 CtIP 融合的新型 Cas9,在发育中的小鼠大脑中,体外和体内的敲入性能提高了 3 倍以上。继续使用这种效率和精度的比率框架对现有和新型编辑剂进行比较评估,将进一步促进直接体内敲入和未来基因疗法的发展。
测序技术的最新进展表明,由染色体重排引起的基因融合是癌症基因组畸变的常见标志之一。例如,对癌症基因组图集(TCGA)数据集进行了详细分析,确定了33种癌症类型的9,966个表征良好的癌症样品中的20,731个基因融合(在对3,838种转录列表过滤后,在648个非否认样品中检测到的3,838个转录列表。另一项研究分析了来自TCGA的9,624个肿瘤的研究总共确定了25,664个融合,并建议融合驱动16.5%的癌症病例的发展,并在超过1%的癌症病例中充当唯一的致癌驱动器(9)。在这篇综述中,我们将总结并讨论新颖的基因融合,除了ALK,ROS1,NTRK和RET融合,这些基因融合被认为是NSCLC中的致癌驱动因素,尤其是对于肺腺癌。这些罕见但可能重要的融合包括神经凝集素1(NRG1)融合,MET融合,涉及成纤维细胞生长因子受体受体(FGFR)家族成员,EGFR融合和BRAF融合的融合基因。Some studies reported that rare primary pulmonary tumors have specific fusion genes, e.g., synaptotagmin 1 ( SYT )- SSX1 or SYT- SSX2 fusions in synovial sarcoma (10) and EWS RNA binding protein 1 ( EWSR1 )- cAMP responsive element binding protein 1 ( CREB1 ) fusion in pulmonary myxoid sarcoma (11);但是,我们不会在这篇评论中包括这些罕见的肿瘤。
Fröhlich 1,2,3,Barbara Hutter 1,2,3,Umut H. Toprak 3,6,Olaf Neumann 7,Albrecht Stenzinger 3,7,8,4
目前的 Cas9 试剂可以高度特异性地靶向基因组位点。然而,当用于敲入时,靶向结果本质上是不精确的,通常会导致非预期的敲除而不是预期的编辑。这将基因组编辑的应用限制在离体方法中,其中可能进行克隆选择。在这里,我们描述了一种使用迭代高通量体外和高产量体内测定的工作流程,以评估和比较 CRISPR 敲入试剂在编辑效率和精度方面的性能。我们测试了 Cas9 和 DNA 供体模板变体的组合,并确定 Cas9-CtIP 与原位线性化供体在细胞系和小鼠脑体内显示出成倍的编辑精度增加。通过迭代此过程,我们生成了新的化合物融合,包括 eRad18-Cas9-CtIP,其性能进一步成倍增加。继续利用该平台开发精确编辑试剂有望在模型生物中直接进行体内敲入,并有望用于未来的靶向基因疗法。
抗 Xa 试验是一种显色试验,用于测量/检测抑制活化因子 X (Xa) 的药物。抗 Xa 肝素试验通常用于使用肝素的专用校准物测量未分级肝素 (UFH) 的抗凝作用。另一种最常用的肝素输注管理试验是活化部分凝血活酶时间 (aPTT)。同一血液样本的 aPTT 和抗 Xa 结果之间通常存在不一致,这会导致方案驱动的肝素输注调整存在差异。然而,在基于抗 Xa 和 aPTT 的 UFH 管理方法之间,出血或复发性血栓形成等硬性临床结果并没有差异。多项评估发现,与 aPTT 相比,使用基于抗 Xa 的管理可以更快地达到目标值,并且速率调整更少。目前,FDA 已批准抗 Xa 肝素和抗 Xa LMWH 测定的校准品。抗 Xa 直接作用口服抗凝剂的校准品正在开发中,但目前尚未获得 FDA 批准。
随着个性化医疗的兴起,非小细胞肺癌也开始出现。自 2004 年发现表皮生长因子受体 (EGFR) 突变以来,从分子水平上定义的可从靶向治疗中获益的患者亚组名单已大幅增加,目前的国际指南建议对所有新诊断的局部晚期或转移性非鳞状非小细胞肺癌患者进行至少 5-8 种生物标志物的分子检测,以选择最佳患者 (5-9)。非小细胞肺癌中 ALK 重排的惊人故事促使人们寻找其他可能用于靶向治疗的致癌重排。神经调节蛋白 - 1 (NRG1) 和 NTRK 融合是最近在非小细胞肺癌中发现的两种重排,是肿瘤不可知生物标志物的两个杰出例子。虽然这两种基因异常相对罕见,但它们代表了 NSCLC 的两个临床相关亚组,可以从靶向治疗中获益。本文我们全面概述了 NRG1 和 NTRK 重排 NSCLC 的生物学和临床病理学特征,以及关于利用这些靶点进行治疗的现有数据。