在此工作过程中,腺嘌呤碱基编辑器被设计来纠正 SERPINA1 中致病的 PiZ 突变。由于关注点狭窄,优化的碱基编辑器不符合对 TadA* 脱氨酶变体或 spCas9 PAM 变体 3,4,5 的更一般建议。虽然精确纠正 PiZ 突变是最常见的编辑结果,但第二丰富的等位基因 (D341G A1AT) 表现出与野生型相当的分泌和弹性蛋白酶抑制特性。使用 LNP 递送技术,我们在 NSG-PiZ 转基因小鼠模型中评估了我们的碱基编辑方法。我们观察到平均 7 天时有益等位基因为 16.9%,3 个月时为 28.8%,此时接受治疗的动物血清 A1AT 水平相对于对照动物增加了 4.9 倍。弹性蛋白酶抑制能力的提高和单个 A1AT 亚型的质谱定量进一步证实了这一结果。肝脏病理也显著改善,测量结果显示 PAS-D 染色的 PiZ 小球减少。这些结果表明碱基编辑有可能解决 A1AT 缺乏症引起的肺病和肝病。
www.genomics-online.com美国和加拿大订购:+1 877 302 8632 | support@antibodies-online.com第1/2页| ABIN5136134的产品数据表| 09/12/2023 |版权抗体在线。保留所有权利。
订购网址:www.genomics-online.com 美国和加拿大:+1 877 302 8632 | support@antibodies-online.com 第 1/2 页 | ABIN5146631 产品数据表 | 2023 年 9 月 12 日 | 版权所有antibodies-online。保留所有权利。
通过诱导有害外显子跳跃来恢复基因功能已被证明可有效治疗遗传疾病。然而,许多临床上成功的外显子跳跃疗法都是基于寡核苷酸的短暂疗法,需要频繁给药。基于 CRISPR-Cas9 的基因组编辑可导致外显子跳跃,是一种有前途的治疗方式,可以永久缓解遗传疾病。我们表明,机器学习可以选择破坏剪接受体并导致目标外显子跳跃的 Cas9 向导 RNA。我们通过实验测量了小鼠胚胎干细胞中 1,063 个向导 RNA 靶向的 791 个剪接序列的多样化基因组整合文库的外显子跳跃频率。我们发现,当使用阈值预测的外显子跳跃频率分别为 50% 和 70% 时,我们的方法 SkipGuide 能够以 0.72 和 0.91 的精度识别有效的向导 RNA。我们预计 SkipGuide 将有助于选择用于评估 CRISPR-Cas9 介导的外显子跳跃疗法的引导 RNA 候选物。
www.genomics-online.com美国和加拿大订购:+1 877 302 8632 | support@antibodies-online.com第1/2页| ABIN5102925的产品数据表| 09/12/2023 |版权抗体在线。保留所有权利。
摘要:在过去的十年中,基于基于RNA引导的核酸酶的相对较新的基因编辑工具的出现,基因工程进行了革命:CRISPR/CAS9系统。自1987年的第一项报告和2007年作为细菌防御机制的表征以来,该系统引起了极大的兴趣和研究的关注。CRISPR系统可为细菌免疫免受入侵遗传物质的影响。但是,通过序列和结构的特定修改,它成为一个精确的编辑系统,能够修改各种生物的基因组。这些修饰的重新确定包括各种方法,包括开发更准确的核酸酶,对细胞环境和表观遗传条件的理解以及重新设计的指南RNA(GRNA)。考虑到CRISPR/CAS9系统正确性能的重要性,我们的范围将强调后一种方法。因此,我们介绍了过去和最新指南基于RNA Web的设计工具的概述,突出了多年来其计算架构和GRNA特征的演变。我们的研究解释了使用机器学习技术,神经网络和GRNA/目标相互作用数据来启用预测和分类的计算方法。本评论可以打开一个动态社区的大门,该社区使用最新的算法来优化和创建有前途的GRNA,适合现代CRISPR/CAS9工程。
摘要 - 这项工作的目的是开发一种在大豆(Glycine Max)胚胎中创建和验证CRISPR-CAS系统和不同GRNA的方法。两个模型基因用于用一个GRNA或部分基因缺失的简单突变。通过使用经典限制酶克隆方法将启动子 + grna2插入CRISPR转换向量中,或通过将启动子 + GRNA2取代和插入启动子 + GRNA2。向量成功地构造了一个和两个grnas。大豆中的农杆菌介导的瞬时转化是为了测试GRNA和系统本身的质量(表达盒)。通过酶消化后DNA富集后转化的胚胎中检测到了简单的突变和基因缺失,然后是聚合酶链反应和测序,这表明CRISPR-CAS系统和指南在起作用。该方案可用于加速基于CRISPR的基因组编辑策略,用于大豆的遗传转化。
www.genomics-online.com美国和加拿大订购:+1 877 302 8632 | support@antibodies-online.com第1/2页| ABIN5095426的产品数据表| 01/16/2024 |版权抗体在线。保留所有权利。
针对编码基因组通过CRISPR/ CAS9技术引入核苷酸缺失/插入已成为一种标准程序。它迅速产生了多种方法,例如素数编辑,顶点接近标记或同源性修复,但是,支持生物信息学工具的支持落后于此。新的CRISPR/CAS9应用程序通常会重新征询特定的GRNA设计功能,并且通常缺少一种通用工具。在这里,我们介绍了R/生物导体工具MulticRispr,旨在设计单个grnas和复杂的grna libraries。包装易于使用;在效率和特定的效率上,检测,分数和锻炼;每个目标或CRISPR/CAS9序列可视化和聚集结果;最后返回GRNA的范围和序列。是通用的,多晶状体定义的,并实现了基因组算术框架,作为便利适应最近引入的技术的基础,例如素数编辑或尚未出现。其性能和设计构想(例如目标集) - 特定过滤渲染多晶层在处理类似筛选的方法时选择的工具。
通过传统育种将新特性引入作物通常需要几十年的时间,但最近开发的基因组序列修饰技术有可能加速这一过程。这些新育种技术之一依赖于 RNA 指导的 DNA 核酸酶 (CRISPR/Cas9) 在体内切割基因组 DNA,以促进序列的删除或插入。这种序列特异性靶向由向导 RNA (gRNA) 决定。然而,选择最佳 gRNA 序列有其挑战。几乎所有当前用于植物的 gRNA 设计工具都是基于动物实验数据,尽管许多工具允许使用植物基因组来识别潜在的脱靶位点。在这里,我们检查了八种不同的在线 gRNA 位点工具的预测一致性和性能。不幸的是,不同算法的排名之间几乎没有共识,排名与体内有效性之间也没有统计学上显着的相关性。这表明,影响植物中 gRNA 性能和/或靶位点可及性的重要因素尚未阐明并纳入 gRNA 位点预测工具中。