尼日利亚纳萨拉瓦州卡鲁大学科学学院生物化学系,尼日利亚纳萨拉瓦州,与:oluchukukwu.anunobi@binghamuni.edu.edu.ng; 07034439524; ORCID: 0000-0003-2047-5313 Abstract: The metagenome-assembled genome (MAG) sequences of Pseudomonas putida PP14A and PP20A were obtained by metagenomic sequencing from the gut microbiomes of a female and a male patient both 24 years old from the same household presenting to a health outreach laboratory with complaint of headache, and occasional diarrhoea in尼日利亚纳萨拉瓦州马拉拉巴。 两个PP MAG之间观察到的系统发育关系与其他假单胞菌SPP MAG之间观察到了从人类的人类活动和迁移到pseudomonas putida的全球传播。 关键字:假单胞菌,元基因组组装的基因组,肠道微生物组,毒力,系统发育,2024年6月12日获得;修订(加快)2024年6月17日; 2024年6月24日接受版权2024 AJCEM开放访问。 本文根据创意共享损耗4.0国际许可证 主编:S。S. Taiwo教授尼日利亚纳萨拉瓦州卡鲁大学科学学院生物化学系,尼日利亚纳萨拉瓦州,与:oluchukukwu.anunobi@binghamuni.edu.edu.ng; 07034439524; ORCID: 0000-0003-2047-5313 Abstract: The metagenome-assembled genome (MAG) sequences of Pseudomonas putida PP14A and PP20A were obtained by metagenomic sequencing from the gut microbiomes of a female and a male patient both 24 years old from the same household presenting to a health outreach laboratory with complaint of headache, and occasional diarrhoea in尼日利亚纳萨拉瓦州马拉拉巴。两个PP MAG之间观察到的系统发育关系与其他假单胞菌SPP MAG之间观察到了从人类的人类活动和迁移到pseudomonas putida的全球传播。关键字:假单胞菌,元基因组组装的基因组,肠道微生物组,毒力,系统发育,2024年6月12日获得;修订(加快)2024年6月17日; 2024年6月24日接受版权2024 AJCEM开放访问。本文根据创意共享损耗4.0国际许可证 主编:S。S. Taiwo教授主编:S。S. Taiwo教授
宏基因组通常包含许多来自真核生物的读物。但是,通常没有17种可靠的方法来估计18个元素组中非微生物读数的普遍性,迫使许多分析技术使所有读取都是微生物的经常构成假设19。例如,元基因组组装的20个基因组(MAG)恢复工作的成功是根据映射到21个恢复的MAG的读数的数量来评估的,如果存在真核生物22读,该程序将低估真正的保真度。在这里,我们介绍了“ Singlem Microbial_fraction”(SMF),这是一种可伸缩的23算法,可稳健地估计24元组的细菌和古细菌读数的数量,以及平均微生物基因组大小。SMF不使用真核25参考基因组数据,可以应用于任何Illumina Metagenome。基于26个SMF,我们提出了“域调整的映射率”(DAMR)作为改进的27公制,以评估从元基因组中回收的微生物基因组回收率。我们在模拟和真实数据上基准为28 SMF,并证明DAMR可以指导基因组29恢复。将SMF应用于136,284个公开可用的元基因组,我们报告了30个微生物分数和微生物特异性的微生物31丰度模式的实质性变化,从而提供了有关微生物和真核生物如何分布在地球上的32个。最后,我们表明,大量的人类宿主33个DNA序列数据已存放在公共元基因组存储库中,34可能反对在35释放之前对这些阅读进行筛选的道德指令。38随着宏基因组测序的采用持续增长,我们预计36 SMF是评估基因组恢复工作的宝贵工具,以及37个全球微生物分布模式的恢复。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(本版本发布于2024年5月11日。; https://doi.org/10.1101/2024.05.10.10.593587 doi:biorxiv Preprint
杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
阿斯特里德·伯恩(AstridBöhne)。德国; 6 a.boehne@lili.de,orcid。9玫瑰。 塞维利亚,西班牙,西班牙。 。研究所,诺里奇研究公园,诺里奇,诺里奇,NR4 7UZ,mcectggart@earlham.uk。 Porto,4485–661 19Vairão,葡萄牙; (2)生物学系,港口波尔图20号大学; 。 239玫瑰。塞维利亚,西班牙,西班牙。。研究所,诺里奇研究公园,诺里奇,诺里奇,NR4 7UZ,mcectggart@earlham.uk。 Porto,4485–661 19Vairão,葡萄牙; (2)生物学系,港口波尔图20号大学; 。2325 r.monteiro@leibniz-lib.de,orcid 0000-0003-1374-4474。26 Rebekah A. Oomen,(1)奥斯陆大学生态与进化合成中心,27 Blindernveien,挪威奥斯陆0371 31,(2)奥斯陆大学自然历史博物馆,P.O。28 Box 1172,Blindern,0318,挪威奥斯陆,(3)(3)沿海研究中心,阿格德大学,29 Universitetsveien 25,4630 Kristiansand,挪威,挪威4)生物科学系30 New Brunswick Saint University of New Brunswick Saint John,Taucker Park Road 100 Hättebäcksvägen745296。Rebekahoomen@gmail.com,32 OrcID 0000-0002-2094-5592。33 Olga Vinnere Pettersson,生命实验室科学 - 瑞典(SCILIFELAB),国家34基因组基础设施,Uppsala University,P.O。Box 815,SE-752 37 Uppsala,瑞典。 35 olga.pettersson@scilifelab.uu.se,orcid 0000-0002-5597-1870。 36 Torsten H. Struck,自然历史博物馆,奥斯陆大学,P.O。 Box 1172,Blindern,37 0318 OSLO,挪威。 t.h.struck@nhm.uio.no orcid 0000-0003-3280-6239。 38Box 815,SE-752 37 Uppsala,瑞典。35 olga.pettersson@scilifelab.uu.se,orcid 0000-0002-5597-1870。36 Torsten H. Struck,自然历史博物馆,奥斯陆大学,P.O。Box 1172,Blindern,37 0318 OSLO,挪威。t.h.struck@nhm.uio.no orcid 0000-0003-3280-6239。38
使用长读数据获得的高质量基因组不仅可以更好地了解杂合性水平、重复内容以及与使用短读技术获得的基因组相比更准确的基因注释和预测,而且还可以帮助了解单倍型分化。近年来,长读测序技术的进步使得为非模式生物生成此类高质量组装成为可能。这使我们能够重新审视基因组,而使用前几代数据和组装软件将其组装到染色体规模上一直存在问题。线虫是后生动物中种类最多、种类最多的动物门之一,但对其研究仍然很少,许多以前组装的基因组都是碎片化的。使用 Nanopore R10.4.1 和 PacBio HiFi 获得的长读长,我们生成了 Mermithidae 科二倍体线虫的高度连续组装体,目前尚未获得该科的密切相关基因组,以及 Panagrolaimidae 科三倍体线虫的折叠组装体和分阶段组装体。这两个基因组之前都已分析过,但碎片组装体的支架大小与组装前的长读长长度相当。我们的新组装体说明了长读长技术如何更好地表示物种基因组。我们现在能够根据更完整的基因和转座因子预测进行更准确的下游分析。
微生物群落中的土壤中的微生物群落仍然在很大程度上未知,尽管它们在温室气体的循环中起着重要作用。在这里,我们报告了从挪威北部Rásttigáisá的矿物苔原土壤中回收的59种非冗余元基因组组装基因组(MAGS)。通过根据四核苷酸频率和差异覆盖范围来通过聚类重叠群来获得MAG,并进行手动策划以去除具有外围GC含量和/或平均覆盖率的重叠群。大多数MAG被分配到细菌门念珠菌(n = 12),verrucomicrobiota(n = 10)和酸眼杆菌(n = 9)。所有古细菌(n = 4)属于硝基果酸念珠菌(Themoproteota)。59Rásttigáisámags扩大了我们对苔原微生物组的多样性和生态作用的了解。
杜松种类是杯形科中的灌木或树木,在森林生态系统中起着重要作用。在这项研究中,我们报告了在哈萨克斯坦收集的五种假发物种的质体(PT)基因组的完整序列(j。 communis,j。 Sibirica,J。 pseudosabina,j。 semiglobosa和j。 Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。在这项研究中,我们报告了在哈萨克斯坦收集的五种假发物种的质体(PT)基因组的完整序列(j。communis,j。Sibirica,J。 pseudosabina,j。 semiglobosa和j。 Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。Sibirica,J。pseudosabina,j。semiglobosa和j。Davurica)。 除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。 Sabina和J。 Seravschanica,我们先前已报告。 将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。 杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。 semiglobosa)至128,097 bp(j。 communis)。 每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。 在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。 对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。 基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。 PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。Davurica)。除了两个完整的Pt基因组序列外,还注释了五种物种的Pt基因组的序列。Sabina和J。Seravschanica,我们先前已报告。将这七种物种的Pt基因组序列与Pub-lic ncbi数据库中可用的杜松物种的Pt基因组进行了比较。杜松物种的PT基因组的总长度,包括先前发表的PT基因组数据,范围为127,469 bp(j。semiglobosa)至128,097 bp(j。communis)。每个杜松子质体由119个基因组成,包括82个蛋白质编码基因,33个转移RNA和4个核糖体RNA基因。在确定的基因中,16个包含一个或两个内含子,并复制了2个tRNA基因。对PT基因组序列的比较评估表明,鉴定了1145个简单序列重复标记。基于82种蛋白质编码基因的26种假发物种的系统发育树,将杜松样品分为两个主要进化枝,对应于Juniperus和Sabina切片。PT基因组序列的分析表明ACCD和YCF2是两个最多态性基因。使用这两个基因对26种假发物种的系统发育评估证实,它们可以有效地用作该属中植物分析的DNA条形码。这些假发物种的测序质体提供了大量遗传数据,这些数据对于该属的将来的基因组研究很有价值。
box1。该方案显示了试点项目中的ERGA工作流程。最初由ERGA社区提名(1),并伴随着一种全面的形式,其中包含用于物种选择的问题(2),基于几个排除,优先级和可行性标准。物种分配给参与的测序伙伴(3),该伙伴负责与基因组团队负责人(通常是样本提供者)联系,以组织所有必要的入职和监管要求和文档,并同意生成满足EBP质量指标的参考基因组(4)。样本,保证金,并准备几个子样本管以与测序合作伙伴和协作研究小组一起安排,以进行测序(5)。还鼓励样本提供商在测序之前对样品进行对样品进行对照,并将相应的材料存储在当地的生物群体中。元数据以下指南(6),上传到元数据经纪平台COPO,并由飞行员样本管理团队(7)验证。确认所有所需的文档和元数据已经到位后,样品被运送到了指定的测序设施中的冷链(8)。