人体由四种组织组成:结缔组织、上皮组织、肌肉组织和神经组织。结缔组织结合、分离和连接其他类型的组织。结缔组织组成人体的骨骼、血液、韧带和肌腱。上皮组织形成皮肤的外层并覆盖体腔,例如消化系统和呼吸系统。肌肉组织形成移动身体、使心脏跳动和将食物通过消化道的肌肉。最后,神经组织构成神经系统,包括由大脑和脊髓组成的中枢神经系统,以及由连接身体肌肉和器官的神经组织组成的周围神经系统。(神经系统的划分将在第 4 章中详细讨论。)
2.21人脑的血液供应!在基础(a),副乳头(b)和横向(c)脑视图中描绘了脑部前,中部和后脑动脉 - 为脑半球提供血液的三个主要动脉。基底和内颈动脉在大脑的底部形成一个被称为威利斯圆的圆圈。
该研究主题重点介绍了我们对神经胶质在神经疾病中作用的理解的最新进展,特别关注神经发育障碍。这是神经科学中新兴的领域,因为长期以来认为神经胶质细胞在大脑中具有简单的支撑作用。研究主题由两篇研究文章和两次评论组成,突出了神经胶质细胞在不同的神经发育障碍中的作用。结节性硬化症复合物(TSC)是一种遗传疾病,其特征是TSC1或TSC2基因的功能丧失,导致雷帕霉素(MTOR)途径在分子水平上的机理靶标过度激活。mTOR失调导致皮质发育改变,导致形成称为块茎的局灶性病变,这些局灶性病变与包括癫痫在内的广泛的神经系统表现相关。对星形胶质细胞在这种疾病中的贡献有很少的了解。Luinenburg等人的研究。研究了与TSC患者衍生的诱导的多能干细胞不同的星形胶质细胞与疾病相关的表型,并在二维中培养。TSC星形胶质细胞表现出降低的成熟度,无法通过谷氨酸转运蛋白和受体的表达降低,谷氨酰胺连接酶和衔接蛋白以及吞噬活性的降低,无法清除过量的细胞外谷氨酸。这项研究进一步了解了我们对TSC中星形胶质细胞缺陷的理解,并为TSC治疗提供了新的潜在途径,该途径的重点是星形胶质细胞。这是智力残疾和自闭症的主要原因之一。Talvio和Castrén的综述着重于脆弱X综合征(FXS)的星形胶质细胞功能障碍,这是由于缺乏脆弱的X智力低下蛋白(FMRP)引起的神经发育障碍。与Luinenburg等类似。研究,该评论指出了FXS中星形胶质成熟的动力学改变。它为参与FXS发病机理的其他细胞自主星形胶质细胞表型提供了证据,例如改变,钙信号传导,脂质稳态和炎症活性。此外,FXS星形胶质细胞有效的突触功能,可能参与FXS中神经元发育异常。自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,越来越多的证据表明,神经胶质细胞功能障碍可能有助于其病理生理学。此外,能量代谢对于正常的脑发育至关重要,代谢改变会导致不同的神经发育障碍。Cantando等人的评论。描述了发育中产后脑的星形胶质细胞和小胶质细胞的代谢
二维神经元培养物概括大脑体内环境的能力有限。在这里,我们引入了一个三维体外模型,用于人类神经元转换,超过了二维培养物的空间和时间约束。专注于与帕金森氏病有关的诱导dopaine神经元(IDAS)的直接转换,该模型在2周内产生功能成熟的IDAS,并允许长期生存。作为概念证明,我们使用单核RNA测序和iDan生成期间的毛谱系跟踪,并发现所有神经胶质亚型都会产生神经元,并且该元素依赖于三个神经转化因子的协调表达。我们还展示了随着时间的流逝,成熟和功能性IDAS的形成。该模型促进了转化过程的分子研究,以增强对转化结果的理解,并为旨在推进患病大脑中替代性治疗策略的体外重编程研究提供了系统。
摘要人类进化出一种与发育和基因调节修饰有关的膨胀且复杂的大脑皮层。1-3。人类加速区域(HAR)是具有人类特异性核苷酸取代的高度保守基因组序列。尽管有成千上万的带注释的竖琴,但它们对人类特异性皮质发育的功能贡献在很大程度上是未知的4,5。hare5是在大脑发育过程中活跃的Wnt信号受体Frizzled8(FZD8)的HAR转录增强子6。在这里,使用基因组编辑的小鼠和灵长类动物模型,我们证明了人(HS)Hare5微型皮质发育和连通性通过控制神经祖细胞(NPC)的增殖和神经源能力。HS-HARE5敲入小鼠的新皮质含量显着增大,其中包含更多的神经元。 通过测量体内神经动力学,我们显示了这些解剖学特征与皮质区域之间功能独立性的增加相关。 要了解潜在的发展机制,我们使用实时成像,谱系分析和单细胞RNA测序评估祖细胞命运。 这揭示了HS-HARE5修饰了径向神经胶质祖细胞的行为,在早期发育阶段增加了自我更新,随后神经源性扩大。 我们使用基因组编辑的人和黑猩猩(PT)NPC和皮质器官来评估HS-HARE5和PT-HARE5的相对增强剂活性和功能。 使用这些正交策略,我们显示了HARE5驱动器中的四个人类特异性变体增加了增强剂活性,从而促进了祖细胞增殖。HS-HARE5敲入小鼠的新皮质含量显着增大,其中包含更多的神经元。通过测量体内神经动力学,我们显示了这些解剖学特征与皮质区域之间功能独立性的增加相关。要了解潜在的发展机制,我们使用实时成像,谱系分析和单细胞RNA测序评估祖细胞命运。这揭示了HS-HARE5修饰了径向神经胶质祖细胞的行为,在早期发育阶段增加了自我更新,随后神经源性扩大。我们使用基因组编辑的人和黑猩猩(PT)NPC和皮质器官来评估HS-HARE5和PT-HARE5的相对增强剂活性和功能。使用这些正交策略,我们显示了HARE5驱动器中的四个人类特异性变体增加了增强剂活性,从而促进了祖细胞增殖。这些发现说明了调节性DNA的小变化如何直接影响关键的信号通路和大脑发育。我们的研究揭示了Hars的新功能,这是对人脑皮质的扩张和复杂性至关重要的关键调节元素。
progranulin和TDP-43神经退行性疾病之间的缺失联系,其无情进行的临床课程和稀疏的治疗选择,负责全球范围内的大量发病率和死亡率。这些疾病是通过进行性运动和/或认知功能障碍在临床上表征的,并在病理上通过在脆弱的神经元种群中堆积错误的蛋白质在病理上表征。与神经退行性条件相关的大多数遗传突变直接影响产生,溶解度,细胞内定位或骨料易发蛋白的周转率。但是,ftld-grn是一个显着的例外。在TDP-43夹杂物(FTLD-TDP)的额颞叶脱发子集中,患者在GRN中具有杂合性损失 - 功能突变,从而导致秘密蛋白蛋白预化蛋白的单倍弥补。预胰岛素单倍氨酸导致神经变性的机制和特征性的TDP-43蛋白聚集体仍然是一个重要但未解决的问题。
1 美国俄亥俄州立大学医学院神经科学系,俄亥俄州哥伦布 43210,美国 2 美国俄亥俄州立大学神经科学研究生课程,俄亥俄州哥伦布 43210,美国 3 美国俄亥俄州立大学校园化学仪器中心,质谱和蛋白质组学设施,俄亥俄州哥伦布 43210,美国 *通讯作者:Andy J. Fischer,美国俄亥俄州立大学医学院神经科学系,3020 Graves Hall, 333 W. 10 th Ave,哥伦布,俄亥俄州 43210-1239,美国。电话:(614) 292-3524;传真:(614) 688-8742;电子邮件:Andrew.Fischer@osumc.edu 缩写标题:视网膜 Müller 胶质细胞中的 S1P 信号传导 页数:67 图表数量:10 表格数量:2 补充图表数量:5 补充表格数量:2 作者贡献:OT 设计并执行实验、收集数据、绘制图表并撰写稿件。ND 和 HE-H 执行实验并收集数据。CG 执行实验、收集数据并撰写稿件。AJF 设计实验、分析数据、绘制图表并撰写稿件。 致谢:我们感谢 Timothy Hla 博士就 S1P 受体的不同激动剂和拮抗剂提出的建议。我们还要感谢俄亥俄州立大学校园化学仪器中心的质谱和蛋白质组学核心所提供的服务。 资金:这项工作得到了 R01 EY032141-03(AJF)的支持。
神经血管单元 (NVU) 是一种复杂的多细胞结构,由内皮细胞 (EC)、神经元、神经胶质细胞、平滑肌细胞 (SMC) 和周细胞组成。每个组成部分都紧密相连,形成结构和功能单元,调节中枢神经系统 (CNS) 血流和能量代谢,并形成血脑屏障 (BBB) 和内血视网膜屏障 (BRB)。顾名思义,NVU 的“神经”和“血管”组成部分是众所周知的,神经血管耦合是 NVU 的关键功能。然而,NVU 由多种细胞类型组成,其功能超出了由此产生的神经血管耦合,具有信号传导、代谢和体内平衡的跨组成部分联系。在 NVU 中,神经胶质细胞越来越受到关注,而且越来越明显的是,它们在 NVU 中发挥着各种多层次的功能。研究表明,神经胶质细胞功能障碍先于神经元和血管病变出现,这表明神经胶质细胞在 NVU 功能和疾病发病机制中发挥着核心作用。在这篇综述中,我们以“神经胶质细胞为中心”的观点看待 NVU 在视网膜和大脑中的发育和功能,以及这些在疾病中如何变化,以及先进的实验技术将如何帮助我们解决未解问题。
摘要在过去十年中,通过应用新技术,我们对神经疾病的理解得到了极大的增强。全基因组关联研究已突出了神经胶质细胞作为疾病的重要参与者。单细胞分析技术正在以未注明的分子分辨率提供神经元和神经胶质疾病状态的描述。然而,我们对驱动疾病相关的细胞态的机制以及这些状态如何促进疾病的机制仍然存在巨大差距。我们理解中的这些差距可以由基于CRISPR的功能基因组学桥接,这是一种有力的系统询问基因功能的方法。在这篇综述中,我们将简要回顾有关神经疾病相关的细胞态的当前文献,并引入基于CRISPR的功能基因组学。我们讨论了基于CRISPR的筛查的进步,尤其是在相关的脑细胞类型或细胞环境中实施时,已经为发现与神经系统疾病相关的细胞状态的机制铺平了道路。最后,我们将描述基于CRISPR的功能基因组学的当前挑战和未来方向,以进一步了解神经系统疾病和潜在的治疗策略。