‒ 例如,(0.99) 99 = 37% 粗产量 ‒ 杂质更多,色谱分离更困难 ‒ pegRNA(基于 Cas9 sgRNA 进行主要编辑)甚至更长(~140 聚体)
© 2020 德国达姆施塔特默克集团及其附属公司。保留所有权利。默克、充满活力的 M、SygRNA 和 Sigma-Aldrich 是德国达姆施塔特默克集团或其附属公司的商标。所有其他商标均为其各自所有者的财产。有关商标的详细信息可通过公开资源获取。
getAziMuthScores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 getCasrxrfScores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 GetCfdsCores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 GetCrispraiscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 getCrispraterscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 GetCrisprScanscors。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 GetDeepCPF1Scores。 。 。 。 。 。 。 。8 GetDeepCPF1Scores。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 GetDeepShoscores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 GetDeepCas9Scores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 GetThpamgScores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。12 GetLindelsCores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 GetMitscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 getRuleset1scores。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15个DatulseT3Scores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16得分Mehodingfo。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 sgraxamplcrispra。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。18 sgrnaexamplecrispri。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 tssexamplecrispra。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 tssexamplecrispri。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19
CRISPR 干扰 (CRISPRi) 是一种在哺乳动物细胞中沉默基因的高效方法,它采用酶失活形式的 Cas9 (dCas9) 与一个或多个与靶基因转录起始位点互补 20 个核苷酸 (nt) 的向导 RNA (gRNA) 复合。此类 gRNA/dCas9 复合物与 DNA 结合,阻碍目标基因座的转录。在这里,我们提出了一种替代的基因抑制策略,即使用活性 Cas9 与截短的 gRNA (tgRNA) 复合。Cas9/tgRNA 复合物与特定靶位点结合而不会触发 DNA 切割。当靶向转录起始位点附近时,这些短的 14-15 nts tgRNA 可有效抑制果蝇体细胞组织中几种靶基因的表达,而不会产生任何可检测到的靶位点突变。 tgRNA 在与 Cas9-VPR 融合蛋白复合时还可以激活靶基因表达或调节增强子活性,并且可以整合到基因驱动中,其中传统 gRNA 维持驱动,而 tgRNA 抑制靶基因表达。
CRISPR 疗法的临床成功取决于 Cas 蛋白的安全性和有效性。来自新凶手弗朗西斯菌 (FnCas9) 的 Cas9 对错配底物的亲和力可以忽略不计,这使得它即使在结合水平上也能以非常高的精度区分 DNA 中的脱靶。然而,它的细胞靶向效率很低,限制了它在治疗应用中的使用。在这里,我们合理地设计了蛋白质以开发增强的 FnCas9 (enFnCas9) 变体,并将其细胞编辑活性扩展到以前无法访问的基因组位点。值得注意的是,一些变体释放了从 NGG 到 NGR/NRG 的原间隔区相邻基序 (PAM) 约束,使其在人类基因组位点上的可访问性增加了约 3.5 倍。enFnCas9 蛋白在体外和细胞中都具有单一错配特异性,从而扩大了基于 FnCas9 的 CRISPR 诊断的靶标范围,用于检测点突变和致病 DNA 特征。重要的是,它们在编辑效率、敲入率和脱靶特异性方面比其他经过设计的 SpCas9 高保真版本(SpCas9-HF1 和 eSpCas9)更胜一筹。值得注意的是,enFnCas9 变体可以与延长长度的 gRNA 结合使用,在 PAM 约束的规范碱基编辑器无法访问的位点进行强大的碱基编辑。最后,我们展示了使用 enFnCas9 腺嘌呤碱基编辑器完全纠正患者衍生的 iPSC 中的疾病特异性视网膜色素变性突变,突出了其在治疗和诊断中的广泛应用。
摘要 基于 CRISPR 的诊断技术 (CRISPRDx) 通过检测核酸和识别变异体改善了临床决策,尤其是在 COVID-19 大流行期间。新型和工程化的 CRISPR 效应子的发现加速了这一进程,它们扩大了诊断应用的范围,涵盖了广泛的致病和非致病条件。然而,每个诊断 CRISPR 流程都需要根据所用 Cas 蛋白的基本原理、其向导 RNA (gRNA) 设计参数和检测读数定制检测方案。这对于变异检测尤其重要,变异检测是基于测序方法的低成本替代方法,目前尚无用于 CRISPRDx 即用型设计的计算机模拟流程。在本文中,我们使用统一的 Web 服务器 CriSNPr(基于 CRISPR 的 SNP 识别)填补了这一空白,它为用户提供了基于六种 CRISPRDx 蛋白(Fn /en Fn Cas9、Lw Cas13a、Lb Cas12a、Aa Cas12b 和 Cas14a)从头设计 gRNA 的机会,并查询可用于验证相关样本的即用型寡核苷酸序列。此外,我们还提供了一个精选的预先设计的 gRNA 数据库以及迄今为止报告的所有人类和 SARS-CoV-2 变体的靶标/脱靶数据库。CriSNPr 已在多种 Cas 蛋白上得到验证,证明了其在多个检测平台上广泛且直接的适用性。CriSNPr 可在 http://crisnpr.igib.res.in/ 找到。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 5 月 21 日发布。;https://doi.org/10.1101/2020.05.20.103614 doi:bioRxiv 预印本
g,靶向必需(红色)和非必需(蓝色)基因(n = 4个GRNA)的单个GRNA的归一化耗竭。钻石表示GRNA的中位数。中间95%的非靶向(NT)GRNA的分布以灰色显示。箱图表明所有靶向必不可少的GRNA(平均DEPMAP计时<-1,n = 1,095个细胞系)(红色)和非必需(Chronos> -0.25)(蓝色)基因(蓝色)基因和HAP1细胞中的基因,并使用两侧Mann -Whitney U Test确定了显着性。
* 我们保证针对人类、小鼠、大鼠、斑马鱼或线虫基因的预设计 gRNA 的性能。对于其他物种,您可以使用我们的专有算法来设计定制 gRNA。如果您有自己的或来自出版物的 gRNA 原型间隔物设计,请使用我们的设计检查工具评估它们的靶向和脱靶潜力,然后再订购使用我们的 Alt-R gRNA 修饰合成的 gRNA。有关预设计 gRNA 保证的详细信息,请参阅 www.idtdna.com/CRISPR-Cas9。