随着可再生能源的大规模开发,例如风能和太阳能,可再生能源的网格连接对电力系统的安全性和稳定性构成了一定的威胁,并且对分销网络的经济调度带来了巨大的挑战。传统和单一调度方法,例如负载需求响应或网络重新配置,无法满足分销网络安全和经济运作的需求。本文提出了一种经济调度方法,用于考虑网络重新构造的风力发电的分配网络,并建立了一个经济调度模型,其客观功能是最小化分配网络运营成本,重新配置成本和总系统网络损失。基于分销网络中能源存储和反应性电源补偿设备的最佳调度以及需求响应的全面利用,提出了一种与多目标协作优化的混合整数二阶锥体编程(MISOCP)方法。使用IEEEE33节点系统的测试结果验证了本文中提出的方法的可行性和适用性。
镁空气燃料电池(MAFC)是一种混合系统,结合了燃料电池和电池的设计,需要持续更换阳极和电解质才能运行。MAFC应用程序限制了短期高功率应用,例如紧急和便携式电源。因此,这项研究的重点是通过研究电解质体积,电极位置和电解质浓度对MG -Air燃料电池性能的影响。从电解质体积变化开始,进行了三组实验。然后,将其应用于细胞配置中,以测试具有不同电极位置的MAFC性能。最后,最佳的电极位置与所选电解质一起应用于新的修饰MAFC,以研究电解质浓度对MAFC性能的影响。发现表明,电解质体积对性能并不重要,而较高的NaCl浓度可以显着提高MAFC的性能。10 wt%的NaCl产生的最高功率密度为38.95 mW.cm -2,工作电压为1.67V。不幸的是,在较高的NaCl浓度下观察到较高的腐蚀速率。最后,添加磷酸钠作为腐蚀抑制剂可抑制腐蚀反应并降低腐蚀速率。
可再生能源 (RES) 的大规模接入和负荷的快速发展导致城市电网 (UPG) 频繁出现输电拥塞。输电系统运营商通常执行高压配电网 (HVDN) 重构以缓解输电拥塞。然而,由于负荷和可再生能源变化很快,HVDN 重构可能会频繁进行。这可能会造成严重的安全问题。储能系统 (ESS) 为缓解输电拥塞提供了一种有效的方法。如果储能系统安装和操作得当,只需进行少量的 HVDN 重构即可缓解 UPG 的输电拥塞。因此,本研究提出了一个用于储能系统优化配置的多阶段双层规划模型。上层模型旨在最大化 HVDN 的年综合收益,下层模型则侧重于最小化运营成本。在实际测试系统上进行的仿真结果验证了所提出的方法在缓解传输拥塞的同时具有降低投资和运营成本的巨大潜力。
尽管有许多效果来探索H-BN底物上石墨烯的电子结构,但H-BN层在石墨烯对吸附有毒气体分子的吸附行为上的含量仍然很少了解。在此,我们使用了基于密度功能理论(DFT)22,23的第一个原理方法来研究结构稳定性,以及对有毒气体分子吸附的石墨烯/H-BN异质结构的电子和电子传输性能。首先,我们对每个单层进行了DFT优化计算,然后校准了这些异质结构的能量效果,这是这两层之间的层间距离的函数,以获得最轻松的几何形状contriric contriric contration guration guration guration guration guration guration guration guration guration guration guration guration。将最稳定结构的电子性质与单层的电子特性进行了比较。然后,我们研究了原始石墨烯和石墨烯/H-BN的吸附机制,包括有毒气体的吸附,包括CO 2,CO,NO和NO 2。为了提高这些电子计算的可靠性,我们考虑了这些底物与吸附分子之间的VDW相互作用。为了评估石墨烯/H-BN异质结构作为晚期有毒气体传感器的选择性,我们还采用了非平衡性Green的功能形式,使用密度功能方法来计算这些吸附的系统中的电子传输特性。
锂电池已被广泛用作新能量,以应对环境和能量的压力。锂离子电池的剩余使用寿命(RUL)的预后已经变得更加关键。方便的电池寿命预测允许早期发现性能定义,以帮助迅速维护电池系统。本文提出了一个基于降解轨迹和多个线性回归的坐标重新构造的锂离子电池的RUL预后模型。首先,使用新的采样规则来重新配置新电池的退化数据的坐标和截短的类似电池。然后,使用重新配置数据建立了相似和新的锂离子电池之间的关系。此外,通过考虑时间变化因素的影响,建立了基于降级轨迹和多线性回归的坐标重新配置和多线性回归的新的RUL预后模型,该模型可以通过小样本数据来提高预测准确性,并有效地减少产品开发时间和成本。
在感应介质的折射率中。5通过金属/介电板的界面通过金属/介电板的界面诱导金属的自由电子振动性,而这反过来,这又,它因能量传递而沿界面开始旋转,从而使Indistion Em Wavis携带以免费的电子表面携带,因此,该金属的自由电子均促进了金属的自由电子,从而诱导了金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而使Indistion Em the Em em the Emalons携带的是金属的携带。6沿金属和电介质之间界面的自由电子的集体传播称为表面等离子体波(SPWS)。7 SPWS和Evanescent Wave之间的耦合是由于相匹配而导致的,这是实现SPR条件的必要条件。8,这种情况的实现导致结构6 - 8的重复响应的谐振倾角,因为表面波的激发是直接通过3D梁的激发而引起的。有不同的激发技术,例如Kretschmannconguration,其中,棱镜用于表面等离子体的激发,ottoconguration,ber耦合,以及在全球研究人员使用的耦合方案。9在所有这些耦合方案中,Kretschmanncon基于guration基于辅助的耦合方案是最受欢迎的耦合方案,是通过在TM极极化的入射波中通过TM极极化的入射波涂上(AU)和银色(AG)的新型金属(例如(AU)和银色(Ag)的新型金属(例如(AU)和银色(Ag)),通过涂层新型金属(例如(AU)和银色(Ag),来激发evaneScent波。10黄金通常是理想的选择,因为它的能力
• NIJ Standard - 0602.02 Compliant • Compact, Elegant, Robust and Ergonomic • Uniform Detection of Magnetic and non-Magnetic Targets • Full Digital Design: Consistent Performance and Calibration-Free Operations • Detection of radioactive substances and materials (option) • Extended Continuous Operation Time • Advanced Confi guration Capability • Indoor and Outdoor Operations
组合重新构造是一个基础研究主题,它阐明了组合(搜索)问题的解决方案空间,并连接了各种概念,例如优化,计数,枚举和采样。以其一般形式,组合重新配置与组合问题的配置空间的特性有关。组合问题的配置空间通常表示为图形,但其大小通常在实例大小中指数。因此,组合重新配置上的算法问题并不是微不足道的,需要新颖的工具才能解决。有关最近的调查,请参见[11,7]。在组合重新配置的研究中遇到了两个基本问题。第一个问题询问在配置空间中两个给定解之间的路径,即两种溶液的可达性。第二个问题询问是否存在两个给定解决方案之间的路径的最短长度。第二个问题通常称为最短的重新构造问题。在本文中,我们重点介绍了对匹配的发现问题,即独立边缘的集合。有几种定义配对的配置空间的方法,其中一些已经在文献中进行了研究[8、9、6、3、2]。我们将在第1.1节中解释它们。我们研究了另一个配对的配置空间,我们称之为交替的路径/循环模型。该模型是由匹配多型匹配的邻接动机,我们将很快看到。参见图1作为示例。在模型中,我们给出了一个未方向且未加权的图G,还有一个整数k≥0。配置空间的顶点集由g的匹配至少至少k组成。G中的两个匹配M和N在配置空间中相邻,并且仅当它们的对称差异M n:=(M n)\(M n)\(M n)是单个路径或循环时。特别是我们对k = |的情况感兴趣。 V(g)| / 2,即完美匹配的重新配置。在这种情况下,模型被简化为交替的循环模型,因为M△N不能有路径。在交替循环模型下,两个完美匹配的可达到性是微不足道的:答案总是肯定的。这是因为两个完美匹配的对称差异总是由顶点 - 局部循环组成。因此,我们专注于交替循环模型下的最短完美匹配重新配置。
众所周知,简单的、偶然的 BGP 配置错误可能会中断 Internet 连接。然而,除了少数大规模中断的惊人事件外,人们对错误配置的频率及其原因知之甚少。在本文中,我们首次对 BGP 错误配置进行了定量研究。在三周的时间内,我们分析了来自 Internet 主干网上 23 个有利位置的路由表通告,以检测错误配置事件。对于每个事件,我们都调查了相关的 ISP 运营商,以验证是否是错误配置,并了解事件的原因。我们还积极探测 Internet,以确定错误配置对连接的影响。令人惊讶的是,我们发现配置错误无处不在,每天有 200-1200 个前缀(占 BGP 表大小的 0.2-1.0%)出现错误配置。所有新前缀通告中,接近四分之三是配置错误的结果。幸运的是,最终用户看到的连接对配置错误具有惊人的鲁棒性。虽然配置错误会大大增加路由器的更新负载,但只有二十五分之一会影响连接。虽然配置错误的原因多种多样,但我们认为大多数配置错误都可以通过更好的路由器设计来预防。
众所周知,简单的、偶然的 BGP 配置错误可能会中断 Internet 连接。然而,除了少数大规模中断的惊人事件外,人们对错误配置的频率及其原因知之甚少。在本文中,我们首次对 BGP 错误配置进行了定量研究。在三周的时间内,我们分析了来自 Internet 主干网上 23 个有利位置的路由表通告,以检测错误配置事件。对于每个事件,我们都调查了相关的 ISP 运营商,以验证是否是错误配置,并了解事件的原因。我们还积极探测 Internet,以确定错误配置对连接的影响。令人惊讶的是,我们发现配置错误无处不在,每天有 200-1200 个前缀(占 BGP 表大小的 0.2-1.0%)出现错误配置。所有新前缀通告中,接近四分之三是配置错误的结果。幸运的是,最终用户看到的连接对配置错误具有惊人的鲁棒性。虽然配置错误会大大增加路由器的更新负载,但只有二十五分之一会影响连接。虽然配置错误的原因多种多样,但我们认为大多数配置错误都可以通过更好的路由器设计来预防。