组合重新构造是一个基础研究主题,它阐明了组合(搜索)问题的解决方案空间,并连接了各种概念,例如优化,计数,枚举和采样。以其一般形式,组合重新配置与组合问题的配置空间的特性有关。组合问题的配置空间通常表示为图形,但其大小通常在实例大小中指数。因此,组合重新配置上的算法问题并不是微不足道的,需要新颖的工具才能解决。有关最近的调查,请参见[11,7]。在组合重新配置的研究中遇到了两个基本问题。第一个问题询问在配置空间中两个给定解之间的路径,即两种溶液的可达性。第二个问题询问是否存在两个给定解决方案之间的路径的最短长度。第二个问题通常称为最短的重新构造问题。在本文中,我们重点介绍了对匹配的发现问题,即独立边缘的集合。有几种定义配对的配置空间的方法,其中一些已经在文献中进行了研究[8、9、6、3、2]。我们将在第1.1节中解释它们。我们研究了另一个配对的配置空间,我们称之为交替的路径/循环模型。该模型是由匹配多型匹配的邻接动机,我们将很快看到。参见图1作为示例。在模型中,我们给出了一个未方向且未加权的图G,还有一个整数k≥0。配置空间的顶点集由g的匹配至少至少k组成。G中的两个匹配M和N在配置空间中相邻,并且仅当它们的对称差异M n:=(M n)\(M n)\(M n)是单个路径或循环时。特别是我们对k = |的情况感兴趣。 V(g)| / 2,即完美匹配的重新配置。在这种情况下,模型被简化为交替的循环模型,因为M△N不能有路径。在交替循环模型下,两个完美匹配的可达到性是微不足道的:答案总是肯定的。这是因为两个完美匹配的对称差异总是由顶点 - 局部循环组成。因此,我们专注于交替循环模型下的最短完美匹配重新配置。