– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
3.1 主要特性 ................................................................................................................................................10 3.2 F LIGHT 控制器 ..............................................................................................................................................10 3.2.1 组件 ................................................................................................................................................10 3.2.2 传感器性能 ........................................................................................................................................10 3.2.3 估算算法 ........................................................................................................................................11 3.2.4 控制回路 ........................................................................................................................................11 3.3 F LIGHT 模式 .............................................................................................................................................12 3.3.1 精确悬停 .............................................................................................................................................12 3.3.2 精确返航 (RTH) .............................................................................................................................12 3.3.3 智能 RTH .............................................................................................................................................12 3.3.4 自动起飞 .............................................................................................................................................12 3.3.5 手动起飞 ................................................................................................................................................12 3.3.6 低空飞行 ................................................................................................................................................13 3.3.7 自动着陆 ................................................................................................................................................13 3.4 飞行模式 ................................................................................................................................................13 3.4.1 手动 ................................................................................................................................................13 3.4.2 自动 ................................................................................................................................................13
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
CRISPR / Cas12a 是一种单效应核酸酶,与 CRISPR / Cas9 一样,由于其能够产生靶向 DNA 双链断裂 (DSB) 而被用于基因组编辑。与 Cas9 产生的平端 DSB 不同,Cas12a 产生的粘性末端 DSB 可能有助于精确的基因组编辑,但这一独特功能迄今为止尚未得到充分利用。在当前的研究中,我们发现,短双链 DNA (dsDNA) 修复模板包含一个与 Cas12a 产生的 DSB 末端之一匹配的粘性末端和一个与 DSB 另一端相邻的基因组区域具有同源性的同源臂,能够精确修复 DSB 并引入所需的核苷酸替换。我们将这种策略称为“连接辅助同源重组”(LAHR)。与单链寡脱氧核糖核苷酸 (ssODN) 介导的同源定向修复 (HDR) 相比,LAHR 的编辑效率相对较高,这在报告基因和内源基因中均有体现。我们发现 HDR 和微同源介导的末端连接 (MMEJ) 机制都参与了 LAHR 过程。我们的 LAHR 基因组编辑策略扩展了基因组编辑技术的范围,并更广泛地了解了基因组编辑中涉及的 DNA 修复机制的类型和作用。
事实证明,CRISPR/Cas9 细菌系统是多种生物体中基因操作的有力工具,但同源直接修复 (HDR) 序列替换的效率远低于随机插入/缺失创建。许多研究集中于使用双 sgRNA、细胞同步化循环和合理设计的单链寡 DNA 核苷酸 (ssODN) 递送来提高 HDR 效率。在本研究中,我们评估了这三种方法在提高 HDR 效率方面的协同作用。我们选择了 TNF α 基因 (NM_000594) 进行测试,因为它在各种生物过程和疾病中起着至关重要的作用。我们的结果首次展示了使用两个具有不对称供体设计和三重转染事件如何显著提高 HDR 效率,从不可检测的 HDR 事件提高到 39% 的 HDR 效率,并提供了一种促进 CRISPR/Cas9 介导的人类基因组编辑的新策略。此外,我们证明了可以使用 CRISPR/Cas9 方法编辑 TNF α 基因座,这是一个在未来安全地纠正每位患者的特定突变的机会。
摘要——相机传感器依靠全局或滚动快门功能来曝光图像。这种固定功能方法严重限制了传感器捕捉高动态范围 (HDR) 场景和解决高速动态的能力。空间变化像素曝光已被引入作为一种强大的计算摄影方法,用于光学编码传感器上的辐照度并通过计算恢复场景的附加信息,但现有方法依赖于启发式编码方案和庞大的空间光调制器来光学实现这些曝光功能。在这里,我们引入神经传感器作为一种方法,以端到端的方式与可微分图像处理方法(例如神经网络)联合优化每像素快门功能。此外,我们展示了如何利用新兴的可编程和可重新配置的传感器处理器直接在传感器上实现优化的曝光功能。我们的系统考虑了传感器的特定限制来优化物理上可行的光学代码,我们在模拟和真实场景实验中评估了其快照 HDR 和高速压缩成像的性能。
CRISPR 基因组编辑是一种很有前途的转化研究工具,但可能会导致不良的编辑结果,既可能在编辑的位点上命中目标,也可能在其他基因组位点上脱靶。在这里,我们研究了通过同源定向修复 (HDR) 和使用非同源末端连接 (NHEJ) 的基因编辑插入疾病相关突变后,人类干细胞中有害的靶向效应 (OnTE) 的发生情况。我们在多达 40% 的编辑克隆中发现了逃避标准质量控制的大型单等位基因基因组缺失和杂合性缺失。为了可靠地检测此类事件,我们描述了简单、低成本且广泛适用的定量基因分型 PCR (qgPCR) 和基于单核苷酸多态性 (SNP) 基因分型的工具,并建议将它们用作编辑后的额外质量控制。这将有助于确保编辑位点的完整性并提高 CRISPR 编辑的可靠性。
gRNA(向导 RNA):Cas9 使用的 CRISPR RNA(crRNA)包含 20 个碱基的原间隔元件和与 tracrRNA 互补的额外核苷酸。反式激活 CRISPR RNA(tracrRNA)与 crRNA 的互补区域杂交。组合的 crRNA 和 tracrRNA 与 Cas9 内切酶相互作用,激活编辑复合物以在目标基因组内的特定位点产生双链断裂。这 2 种天然 RNA 分子可以合成生成,用于基因组编辑实验。IDT 科学家已经修改了这些 RNA 的长度和组成,以优化基因组编辑效率,尤其是在与 CRISPR 核酸酶预先复合并以 RNP 形式递送到细胞时。或者,可以使用单向导 RNA(sgRNA)代替 crRNA 和 tracrRNA 的组合。sgRNA 包含通过发夹状环序列连接的 crRNA 和 tracrRNA 序列。向导 RNA(gRNA)可以是 crRNA:tracrRNA 复合物,也可以只是 sgRNA。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。