BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
论文委员会: Olivier Latry,鲁昂大学助理教授 (HDR),推荐人 Nathalie Malbert,波尔多第一大学教授,推荐人 Dominique Baillargeat,利摩日大学 (XLIM) 教授;Raymond Quéré,利摩日大学 (XLIM) 教授,审查员 Jean-Luc Roux,法国国家太空研究中心图卢兹工程师,审查员 Olivier Jardel,泰雷兹阿莱尼亚宇航公司图卢兹工程师,受邀 Didier Floriot,UMS Semiconductors 工程师,受邀 Jean-Luc Muraro,泰雷兹阿莱尼亚宇航公司图卢兹工程师,受邀
论文委员会:Olivier Latry,鲁昂大学助理教授(HDR),审稿人 Nathalie Malbert,波尔多大学教授 1,审稿人 Dominique Baillargeat,利摩日大学教授,XLIM,主席 Denis Barataud,教授利摩日大学 XLIM,考官 Gaudenzio Meneghesso,教授帕多瓦大学,考官 Raymond Quéré,利摩日大学教授,XLIM,考官 Jean-Luc Roux,CNES 图卢兹工程师,考官 Olivier Jardel,Thales Alenia Space 图卢兹工程师,邀请 Didier Floriot,UMS 半导体工程师,邀请 Jean- Luc Muraro,泰雷兹工程师阿莱尼亚航天图卢兹,邀请
论文委员会:Olivier Latry,鲁昂大学助理教授(HDR),推荐人 Nathalie Malbert,波尔多第一大学教授,推荐人 Dominique Baillargeat,利摩日大学教授,XLIM,校长 Denis Barataud,利摩日大学教授利摩日,XLIM,审查员 Gaudenzio Meneghesso,帕多瓦大学教授,审查员 Raymond Quéré,利摩日大学教授,XLIM,审查员 Jean-Luc Roux,法国国家太空研究中心图卢兹工程师,审查员 Olivier Jardel,泰莱阿莱尼亚宇航公司图卢兹工程师,邀请 Didier UMS Semiconductors 工程师 Floriot 邀请 Thalès Alenia Space Toulouse 工程师 Jean-Luc Muraro 邀请
摘要 — 本研究展示了 Si 衬底上 GaN 高电子迁移率晶体管 (HEMT) 的高频和高功率性能。使用 T 栅极和 n ++ -GaN 源/漏接触,栅极长度为 55 nm、源漏间距为 175 nm 的 InAlN/GaN HEMT 的最大漏极电流 ID,MAX 为 2.8 A/mm,峰值跨导 gm 为 0.66 S/mm。相同的 HEMT 表现出 250 GHz 的正向电流增益截止频率 f T 和 204 GHz 的最大振荡频率 f MAX。ID,MAX、峰值 gm 和 f T -f MAX 乘积是 Si 上 GaN HEMT 中报道的最佳乘积之一,非常接近最先进的无背势垒 SiC 上耗尽型 GaN HEMT。鉴于 Si 的低成本和与 CMOS 电路的高兼容性,Si 上的 GaN HEMT 对于成本敏感的应用特别有吸引力。
我们对基于 Al x Ga 1 x N 量子阱通道的 AlN/AlGaN/AlN 高电子迁移率晶体管 (HEMT) 的电气特性进行了成分依赖性研究,其中 x ¼ 0.25、0.44 和 0.58。这种超宽带隙异质结构是下一代射频和电力电子器件的候选材料。使用选择性再生长的 n 型 GaN 欧姆接触会导致接触电阻随通道中 Al 含量的增加而增加。DC HEMT 器件特性表明,对于 x ¼ 0.25、0.44 和 0.58,最大漏极电流密度分别从 280 mA/mm 逐渐降低到 30 mA/mm 再到 1.7 mA/mm。与此同时,这三个 HEMT 的阈值电压 (幅度) 同时从 5.2 V 降低到 4.9 V 再到 2.4 V。这一关于 Al 组分 x 对晶体管特性影响的系统实验研究为在 AlN 上设计用于高电压和高温极端电子器件的 AlGaN 通道 HEMT 提供了宝贵的见解。
基于半导体异质结构的 GaN 器件:两种半导体材料的分层序列,其特征是带隙不连续 通过在 GaN 衬底上沉积一层薄薄的 AlGaN 来形成异质结构。
最近,具有 25 nm T 栅极的 InP 基高电子迁移率晶体管 (HEMT) 已被证明可在 1.1 THz 下放大 [1],这使得传统电子设备在太赫兹应用方面比光学设备更具竞争力。尽管积极推动 T 栅极的占用空间变得更短以实现更高的工作频率现已成为热门研究课题,但针对 100 nm 以下 T 栅极的稳健且经济高效的 T 栅极工艺仍然是行业的首要任务。在本文中,我们将展示格拉斯哥大学在超短 T 栅极工艺开发方面的最新进展。该工艺涉及在 PMMA/LOR/CSAR 三层 EBL 光刻胶堆栈上进行单次电子束光刻 (EBL) 曝光。通过仔细控制光刻胶厚度、电子束剂量以及适当的显影剂和显影时间,我们开发了一种可靠且稳健的工艺,用于具有各种脚和头长度的 T 栅极。图 1 显示了 GaAs 半绝缘基板上典型 T 栅极的扫描电子显微镜 (SEM) 图像。与最先进的 T 门工艺[3][4]相比,新工艺具有多项优势,并且有可能将 HEMT 的 THz 操作占用空间进一步缩小至 20 纳米以下。我们将在会议上更详细地阐述该工艺。
Alfred Hesener 是 Navitas Semiconductor 公司工业和消费应用高级总监,该公司位于美国加利福尼亚州托伦斯,位于德国慕尼黑。他目前的工作重点是利用宽带隙半导体推动工业电源转换和电动机应用领域的发展。曾任英飞凌科技工业产品部应用工程和产品定义主管,以及飞兆半导体区域营销和应用工程主管。他拥有达姆施塔特工业大学微电子学硕士学位。