OlasińskaWiśniewska等人的一项有趣的研究。[1]发表在本期《波兰心脏杂志》上的发表,重点介绍了帕拉西 - roid激素(PTH)作为主动脉瓣狭窄和心力衰竭的老年患者的房颤(AF)的生物标志物的作用。在中位年龄为77岁的106名患者的样本中,作者发现,具有阵发性或持续性AF病史的患者比没有AF的患者更有可能具有更高的PTH水平。这些发现支持以下假设:PTH是一种多面体分子,其功能超出了骨测定法和肾脏的功能。在过去的几十年中,多项研究高度阐明了超par-甲状腺功能障碍和心血管疾病之间的关系[2]。尤其是原发性甲状旁腺功能亢进症(PHPT)的个体更有可能出现动脉高血压,慢性心力衰竭,缺血性心脏病和脑动脉粥样硬化,尤其是在晚期年龄[3]。此外,Iwata等人。[4]发现中度PHPT和PTH水平与主动脉瓣的亚临床钙化有关,而不论血清含量如何。值得注意的是,在这项研究中,PTH与主动脉瓣钙化的关系比其他公认的心血管危险因素(例如动脉高血压,高脂血症,过量体重或吸烟)要强[4]。就AF发作而言,尽管可能受到直接和间接的支持,但PTH的作用尚未得到充分阐明
Allan-Herndon-Dudley综合征(AHDS)是一种罕见的X连锁疾病,会造成严重的神经系统损害,没有有效的治疗。ahDS是由于甲状腺激素转运蛋白MCT8的灭活突变会损害甲状腺激素进入大脑的,从而导致脑甲状腺功能减退症。但是,AHD的病理生理学仍然尚未完全了解,这对于制定治疗策略至关重要。Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs.与对照组相比,从磁共振成像中获得的明显扩散系数(ADC)成像值表明,MCT8缺陷型患者(n = 11)的脑细胞牙术结构改变(n = 11)。与来自类似年龄的对照受试者的大脑样本相比,通过针对11岁和30个妊娠期MCT8缺陷受试者的尸检大脑样本中的星形胶质体标志物的免疫组织化学证实了星形胶质细胞的改变。这些发现得到了验证,并在AHD的鼠标模型中进一步探索。我们的发现证实了MCT8缺乏症中大脑皮层的所有星形胶质体种群的变化,影响星形细胞代谢和线粒体细胞呼吸功能。这些障碍在大脑发育早期出现,并在成人阶段一直持续存在,揭示了皮质星形胶质细胞的异常分布,密度,形态,以及转录组的改变,与成人阶段的类似星形胶质细胞衰差表型兼容。我们得出结论,星形胶质细胞是AHDS中潜在的新型治疗靶标,我们建议ADC成像作为监测神经系统障碍进展的工具,以及治疗中MCT8缺乏症的潜在影响。
摘要目的:标准化基于激素的种子涂料制剂的剂量,以增强香菜种子的发芽和幼苗生长。研究设计:完全随机的设计。研究地点和持续时间:印度哥印拜陀泰米尔纳德邦农业大学种子科学技术系。方法论:香菜种子用不同浓度的基于激素的种子涂料聚合物涂覆,并以四种复制的滚动毛巾法进行了发芽研究。结果:基于激素的种子涂料配方的发芽率%(69%),根长度(16.75厘米),芽长(7.9厘米),干物质产量(0.058 g/10幼苗),活力指数I(1706)和II(1706)和II(3.9)和10g Polymer/kg polymer/kg polymer/kg of Seed exeed of Edeepy of Seedeed of Seed和290ml and 290ml。结论:用10克激素的种子涂料制剂溶解在290 mL水中的种子涂层增强了种子发芽和幼苗生长关键词:[Coriandrum sativum,种子涂料,剂量,剂量,发芽,活力] 1。引言Coriandrum sativum属于家庭apiaceae。它通常被称为香菜,也是印度最重要的香料作物之一。它的叶子用于烹饪目的[1]。它是在全球培养的,用于种子,叶子用作种子被用作香味果实和调味剂[2]。香菜具有广泛的药用特性,包括催眠,抗焦虑,抗惊厥作用,安替尼德剂。它还可以增强记忆力,进展,口头运动障碍,并提供抗菌,神经保护性,抗真菌和驱虫剂益处。此外,香菜表现出杀虫剂,抗氧化剂,抗炎,降低性,心血管,抗糖尿病和镇痛特性[3]。种子的增强是指收获后治疗,这对于播种时的发芽改善,幼苗的生长和缓解种子的递送至关重要[4]。种子涂层被认为是通过增强种子的生理和物理品质来促进可持续农业的有效方法。此过程有助于提高种植效率,提高生长参数,并减轻非生物胁迫和生物应力[5]。
摘要人体和环境之间的独特相互作用,反映了宿主 - 微生物组相互作用,这些相互作用有助于性别差异性疾病敏感性,症状和治疗结果。这些差异源自单个生物学因素,例如性激素作用,性别分散的免疫过程,X连锁基因剂量效应和表观遗传学,以及它们在整个寿命中的相互作用。肠道微生物组越来越被公认为是几个身体系统的主持人,因此受其功能和组成影响。在人类中,生物学成分进一步与性别特定的暴露相互作用,例如饮食偏好,压力源和生活经验,形成复杂的整体,需要创新的方法论才能解散。在这里,我们总结了有关性激素,肠道菌群,免疫系统和血管健康之间相互作用的最新知识,以及它们与心血管疾病性差异流行病学的相关性。我们概述了临床含义,确定知识差距,并重点介绍了未来的研究以解决这些差距。此外,我们还概述了与需要考虑性别/基因差异的心血管研究相关的警告。虽然先前的工作已经分别检查了其中几个组件,但我们在这里引起人们的注意,从心血管转化研究,性别医学和Mi-Crobiome Systems Biology的联合观点进一步转化实用性。
GLP-1 RA 用于治疗肥胖症和减肥 如果长期使用,GLP-1 RA 可减少肥胖患者的多余体重并维持减肥效果。11 临床试验纳入了患有至少一种体重相关合并症的超重成年人。11 例如,一种获准用于长期体重管理的索马鲁肽品牌已使成年人体重平均减轻约 15%,身体质量指数 (BMI) 下降 16.1%。11 另一种品牌的索马鲁肽在使用最高剂量后可使成年人体重减轻 21%。13 但是,重要的是要了解,停止使用 GLP-1 RA 的人很可能会在停止用药后 5 年内恢复到原来的体重。用于治疗暴食症的超说明书用药被认为可以最大限度地减少对食物的强迫性思维和暴饮暴食的冲动。服用这些药物的人报告说,所谓的“食物噪音”(尽管想吃东西,却总是忍不住想吃东西)显著减少了。
摘要 :激素通过刺激细胞的遗传装置、激活酶和改变酶促反应的速率来影响新陈代谢。它们增加决定蛋白质结构的信息核糖核酸的形成,并影响蛋白质的生物合成。生长激素(STG)是一种由192个氨基酸组成的肽类激素,由垂体前叶分泌。这种激素的缺乏会导致垂体功能障碍。重组生长激素的需求在不久的将来可能会增加。由于目前的生产技术由于生产能力有限和生产成本高而无法满足对廉价生长激素的需求。因此,有必要研究治疗性重组蛋白的生产机制。重组生长激素主要利用大肠杆菌菌株合成,用于治疗目的。
哺乳期母亲由于产奶对钙 (Ca 2+ ) 的需求较高,从而引发严重的骨质流失 1 。虽然雌激素通常会通过促进骨骼形成来抵消过度的骨吸收,但这种性类固醇在产后时期会急剧下降。我们在本文中报告,由弓状核 (ARC KISS1 ) 的 KISS1 神经元分泌的脑源性细胞通讯网络因子 3 (CCN3) 填补了这一空白,并作为一种有效的骨合成代谢因子在哺乳期女性中构建骨骼。我们首先展示我们之前报道的女性特异性致密骨表型 2 源自一种体液因子,该因子促进骨量并作用于骨骼干细胞以增加其频率和骨软骨发生潜力。随后,这种循环因子被鉴定为 CCN3,这是一种来自 ARC KISS1 神经元的脑源性激素,能够刺激小鼠和人类骨骼干细胞活动,增加骨骼重塑,加速雌雄小鼠的骨折修复。在哺乳期间检测到 ARC KISS1 神经元中 CCN3 的爆发性表达后,揭示了 CCN3 在正常雌性生理中的作用。在减少 ARC KISS1 神经元中的 CCN3 后,哺乳期母亲的骨骼会流失,并且在低钙饮食的挑战下无法维持其后代。我们的研究结果证实 CCN3 是一种潜在的新型治疗性骨合成代谢激素,适用于两性,并定义了一种新的母体脑激素,以确保哺乳动物物种的生存。
促性腺激素释放激素 (GnRH1) 及其受体 (GnRHR1) 通过调节促性腺激素来驱动生殖。另一种形式 GnRH2 及其受体 (GnRHR2) 也存在于哺乳动物中。在人类中,存在 GnRH2 和 GnRHR2 基因,但 GnRHR2 基因中的编码错误预计会阻碍全长蛋白质的产生。尽管如此,越来越多的证据支持人类存在功能性 GnRHR2。GnRH2 及其受体已在整个身体中得到确认,包括卵巢、子宫、乳腺和前列腺等外周生殖组织。此外,GnRH2 及其受体已在人类大量生殖癌细胞中检测到。值得注意的是,GnRH2 类似物对各种生殖系统癌症(包括子宫内膜癌、乳腺癌、胎盘癌、卵巢癌和前列腺癌)具有强大的抗增殖、促凋亡和/或抗转移作用。因此,GnRH2 是治疗人类生殖系统癌症的新兴靶点。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月18日。 https://doi.org/10.1101/2023.09.30.30.560323 doi:Biorxiv Preprint
a 巴勒莫大学生物、化学和制药科学与技术系,意大利巴勒莫 90123 b 麻省总医院,哈佛医学院,美国马萨诸塞州波士顿 02114 c 英国剑桥癌症研究中心,Hills Road,剑桥 CB2 0QQ,英国 d 新加坡国立大学杨潞龄医学院药理学系,新加坡 117600,新加坡 e 新加坡国立大学杨潞龄医学院新加坡国立大学癌症研究中心,新加坡 119077,新加坡 f 京都大学医学院,日本京都 g 古斯塔夫·鲁西癌症中心,儿童和青少年肿瘤学系,INSERM U1015,巴黎萨克雷大学,法国维尔瑞夫 h 实验治疗学组,Vall d ′ Hebron 肿瘤研究所,西班牙巴塞罗那 i 卡迪夫大学和 Velindre 癌症中心,博物馆大道,卡迪夫 CF10 3AX,英国 j 南洋理工大学李光前医学院(LKCMedicine),实验医学大楼,636921,新加坡 k 新加坡国家癌症中心癌症遗传学服务(CGS),168583,新加坡 l 约翰霍普金斯大学公共卫生学院生物化学与分子生物学系,美国马里兰州巴尔的摩 m 安格利亚鲁斯金大学生命科学学院,英国剑桥 n 伦敦帝国理工学院癌症分部,英国伦敦汉默史密斯校区 o 新加坡国立大学杨潞龄医学院生理学系,117593,新加坡 p 新加坡国立大学杨潞龄医学院健康长寿转化计划,117456,新加坡 q 加利福尼亚大学格芬医学院肿瘤学系,美国加利福尼亚州洛杉矶 r 伦敦大学学院 MRC 分子细胞生物学实验室,英国伦敦 WC1E 6BT Therapeutics Pte Ltd,A*STARTCentral,139955,新加坡