1 摘要 — 准确预测不同时间范围内的太阳能光伏 (PV) 发电量对于能源管理系统的可靠运行至关重要。光伏电站的输出功率取决于非线性和间歇性环境因素,例如太阳辐照度、风速、相对湿度等。太阳能光伏电力的间歇性和随机性会影响估算的精度。为了应对这一挑战,本文提出了一种基于群体分解技术 (SWD) 的混合模型,作为一种短期 (15 分钟) 太阳能光伏发电量预测的新方法。该研究的原创贡献是调查使用 SWD 进行太阳能数据预测。从现场(已并网,土耳其 857.08 kWp Akgul 太阳能光伏电站)获得的每小时分辨率的太阳能光伏发电数据用于开发和验证预测模型。具体而言,分析表明,采用 SWD 技术的混合模型在阴天期间可提供高度准确的预测。
本文提出了一个分层控制系统,可提供从太阳能光伏电厂到网格的辅助服务,而无需其他非极性资源。通过对系统中每个逆变器进行协调的管理,控制系统命令发电厂主动减少其瞬时最大电力潜力的一小部分,即使在不断变化的云覆盖条件下,也为诸如调节储备等服务的服务提供了足够的植物净空,从而使整个发电厂的电源升高或下降。一秒钟的分辨率太阳辐照度数据来自夏威夷地点的案例研究用于验证拟议的控制系统的效率。随后将算法与文献(分组控制算法)的替代控制技术进行比较。结果表明,所提出的分层控制系统在减少发电机里程方面的有效效果超过10倍以支持太阳能PV发电厂的功率发电。
400 nm 至 800 nm。(实线)包括 CsI(Tl) 闪烁体的发射光谱以供比较。(虚线)(b)不同光活性层厚度的 OPD 在暗条件和 950 µW/cm 2 光照辐照度(波长 546 nm)下实验和拟合的电流密度 (J) 与电压 (V) 特性。当实线符号表示光响应时,空心符号表示测得的暗电流。实线是根据非理想二极管方程拟合的暗电流密度。虚线表示当分流电阻 R sh 为无穷大时的理想 JV 曲线。(c)对于具有不同活性层厚度的 OPD,暗电流密度 (J dark ) 测量图与内部电场的关系。(d)反向偏压为 1.5V 时具有 320 nm 厚度活性层的 OPD 的外部量子效率 (EQE)...... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36
CO 2转换为具有高热量价值的分子是减少工业化国家的碳足迹的主要挑战。提出了许多概念,但是到目前为止,已经采取了有限的行动来设计,整合和规模在商业上可行的技术。在这里,我们报告了一种自主太阳能驱动设备的长期性能,该设备在轻度条件下连续将CO 2转换为CH 4。它将生物甲基化反应器耦合到一组将硅 /钙钛矿串联太阳能电池与质子交换膜电解剂结合的集成光化学细胞,以从水中生产太阳能氢。在2022年7月在意大利JRC ISPRA的72小时的室外运营中,基准设备实现了燃油产量(由全球水平辐照度计算得出),这表明,重新设计和密切的实验室规模概念可以克服技术障碍,可以克服该技术范围的工业图片,以使人工的工业人工部署的工具部署。在2022年7月在意大利JRC ISPRA的72小时的室外运营中,基准设备实现了燃油产量(由全球水平辐照度计算得出),这表明,重新设计和密切的实验室规模概念可以克服技术障碍,可以克服该技术范围的工业图片,以使人工的工业人工部署的工具部署。
2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4
本论文的目的是评估 2020 年 6 月至 11 月瑞典市场上八个小型 PV(光伏)系统的技术性能。此外,本论文的目的还在于过滤测量数据,因为现场测量中通常会出现错误数据。已经采用了几种过滤方法来消除错误数据,例如线性插值、异常值和异常发电,以确保用于评估的数据的质量。测量的参数包括逆变器的输出功率、阵列辐照度平面、环境温度和模块温度。虽然模块技术对模块温度有一定影响,但在本研究中,安装方法对系统的模块温度影响更大。研究发现,与建筑一体化光伏(BIPV)系统相比,建筑应用光伏(BAPV)系统的模块温度较低。然而,安装方法对系统性能的明显影响尚不明显。系统 3 和 6 分别是 BAPV 和 BIPV 系统,它们是在单位能量产出 (kWh/kWp) 和性能比 (PR) 方面表现最佳的系统。在此期间,系统 3 的平均 PR 为 89%,系统 6 的平均 PR 为 91%。6 月份的单位能量产出最高,两个系统的单位能量产出约为 135 kWh/kWp。结果还显示,采用单晶硅技术的系统比采用单晶硅技术的系统表现更好
摘要:电动汽车充电管理系统存在一些主要问题。这些问题与主要控制有关,例如负载电流分配、电源平衡、电压控制、电能质量和服务可靠性。当前研究的目标是开发一种电动汽车充电系统的控制算法。所提出的控制算法包括集中控制器和本地控制器,可确保两层控制。通过控制本地电源(光伏系统)和储能系统,该算法旨在减轻由于太阳辐照度、云层覆盖或所连接电动汽车的能源消耗变化而可能出现的电网功率波动。能源管理系统应尽可能优先使用光伏系统产生的太阳能为电动汽车充电。通过最大限度地利用太阳能,充电站可以减少对电网电力的依赖并减少碳排放。索引术语 - 电动汽车、能源管理
摘要:本研究提供了一种技术经济优化技术,用于获得理想的电池存储容量,并结合能够满足所需住宅负载且具有高水平自给率的太阳能电池阵列。此外,还评估了拟议的光伏电池系统的可行性。以一分钟的分辨率测量了 2021 年的年能耗、辐照度和环境温度。从 2021 年到 2030 年运行固定经济模型的模拟。基于对年能耗 3755.8 kWh 的实验评估,研究表明,容量为 2.7 kWp 的光伏阵列能够产生 4295.5 kWh 的年能量产量。确定的最佳电池容量为 14.5 kWh,可以满足 90.2% 的自耗,能源成本为 0.25 美元/kWh。此外,还建立了自耗与净现值成本和能源成本之间的两个三阶多项式关系。
摘要:本研究提供了一种技术经济优化技术,用于获得理想的电池存储容量,并结合能够满足所需住宅负载且具有高水平自给率的太阳能电池阵列。此外,还评估了拟议的光伏电池系统的可行性。以一分钟的分辨率测量了 2021 年的年能耗、辐照度和环境温度。从 2021 年到 2030 年运行固定经济模型的模拟。基于对年能耗 3755.8 kWh 的实验评估,研究表明,容量为 2.7 kWp 的光伏阵列能够产生 4295.5 kWh 的年能量产量。确定的最佳电池容量为 14.5 kWh,可以满足 90.2% 的自耗,能源成本为 0.25 美元/kWh。此外,还建立了自耗与净现值成本和能源成本之间的两个三阶多项式关系。
图2。a)顶部:在7天内3D打印网格模式内WT S. elongatus的生长。底部:5天大的水凝胶的图像,这些水凝胶包含印刷在磁盘,蜂窝和GRID_A几何形状上的WT细胞的图像。补充表S1中描述了这些不同模式的维度细节。b)未载水凝胶(I&II)的FESEM图像,以及含有WT链球菌细胞(III&IV)的水凝胶。S。Elongatus细胞以假绿色突出显示。c)叶绿素自动荧光的共聚焦显微镜图像和含有WT链球菌细胞的水凝胶的Sytox蓝色染色以及生长的0、5和7天。d)在卸载水凝胶的80μmol光子M -2 s -1的入射辐照度中的净光合作用的盒子图,用于固定的水凝胶和抗生素抗生素链球菌菌株[WT(SP r sm r gm r gm r)]。