1神经科学系,生物学科学学院,生物学,医学与健康学院,曼彻斯特大学,曼彻斯特,英国曼彻斯特大学2莱迪亚·贝克尔免疫学与炎症研究所生物学,医学与健康学院
在Ventus,我们在独特的平台中使用了破坏性技术来稳定地表达NLRP3的单体形式。这使我们能够采用目标有向药物发现方法,我们成功地鉴定了许多新的NLRP3小分子抑制剂,这首先与已知的化学物质完全不同。重要的是,通过我们的结构生物学能力和高级计算化学工具,我们能够在原子分辨率下定义小分子的精确结合模式。这一重大进步现在使我们能够使用具有结构启用的药物发现方法在NLRP3抑制剂中最佳。
NOD 样受体家族含吡啶结构域 3 (NLRP3) 炎症小体是一种寡聚复合物,可响应病原体感染的外源信号和非微生物来源的内源性危险信号而组装。当 NLRP3 炎症小体组装激活 caspase-1 时,它会促进炎症细胞因子白细胞介素-1B 和 IL-18 的成熟和释放。NLRP3 炎症小体的异常激活与各种疾病有关,包括慢性炎症、代谢和心血管疾病。NLRP3 炎症小体可以通过几种主要机制激活,包括 K + 外排、溶酶体损伤和线粒体活性氧的产生。有趣的是,代谢危险信号会激活 NLRP3 炎症小体以诱发代谢疾病。 NLRP3 包含三个关键结构域:N 端吡啶结构域、中央核苷酸结合结构域和 C 端富含亮氨酸重复结构域。蛋白质-蛋白质相互作用充当“踏板或刹车”,控制 NLRP3 炎症小体的激活。在这篇综述中,我们介绍了代谢危险信号诱导后或通过与 NLRP3 的蛋白质-蛋白质相互作用(可能发生在代谢疾病中)激活 NLRP3 炎症小体的潜在机制。了解这些机制将有助于开发治疗 NLRP3 相关代谢疾病的特定抑制剂。
PBOB KCNN4-EGFP F2 5'AACCCAGCCAGCAGTCCAAGATGGTGAGCAAGG GCGAGGAGCTGT 3' PBOB KCNN4-EGFP R2 5'CTACTTGTACAGCTCGTCCATGCCG 3' pBOB-jGCaMP7s-F 5'ATGGGTTCTCATCATCATCATC 3' pBOB-jGCaMP7s-R 5'TTACTTCGCTGTCACTATTG TACA 3'mNlrp3 R258W-F 5'TATCCACTGCTGGGAGGTGAGCCTC 3' mNlrp3 R258W-R 5'GAGGCTCACCTCCCAGCAGTGGATA 3' mNlrp3 D301N-F 5'TGGATGGCTTTAATGAGCTACAAGG 3' mNlrp3 D301N-R 5'CCTTGTAGCTCATTAAAGCCATCCA 3' mNlrp3 T 346M-F 5'CTGCTCATAACGATGAGGGCCGGTAG 3' mNlrp3 T346M-R 5'CTACCGGCCTCATCGTTATGAGCAG 3' 409
衰老是一种与细胞老化相关的过程,由不同的应激引发,其特征是分泌各种炎症因子,称为衰老相关分泌表型 (SASP)。在这里,我们提出证据表明,炎症小体传感器 NLRP1 是体外和体内辐射诱导衰老的关键介质。NLRP1 炎症小体通过以 Gasdermin D (GSDMD) 依赖的方式调节 p16、p21、p53 和 SASP 的表达来促进衰老,因为在 NLRP1 不足或 GSDMD 抑制的情况下,这些反应会降低。从机制上讲,NLRP1 炎症小体在细胞质 DNA 传感器 cGMP-AMP (cGAMP) 合酶 (cGAS) 下游被激活,以响应基因组损伤。这些发现为抑制 NLRP1 炎症小体-GSDMD 轴以治疗衰老驱动的疾病提供了理论依据。
炎性体是一种胞质多蛋白复合物,在炎症和细胞死亡中起着至关重要的作用。炎性体复合物中的传感器蛋白检测到各种微生物和内部刺激,从而导致随后的caspase激活。胱天蛋白酶的激活导致促炎性细胞因子IL-1 B和IL-18或凋亡的成熟。炎性体功能障碍与包括自身免疫性疾病和癌症在内的各种疾病的发病机理有关。看来,肠道菌群和炎性体之间的相互作用在胃肠道中起着至关重要的作用。肠道菌群诱导炎性蛋白的表达和激活,这与肠道中的体内平衡和疾病有关。同样,尽管有争议,但越来越多的证据表明,炎性体激活可以调节肠道微生物群的组成,这反过来又影响了疾病进展。在这篇综述中,我们总结了当前的概念和最新的见解,这些概念和肠道共生微生物联系起来。我们描述了炎症体和共生微生物群之间的相互相互作用与宿主中的生理和病理生理后果有关。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2023年5月5日发布。 https://doi.org/10.1101/2023.05.03.23289436 doi:medrxiv preprint
图2:MCC-DSR NP表征和内在化。(a)图绘制了MCC-DSR双重药物纳米颗粒的流体动力直径。显示为平均值±S.D.的数据(n = 3)。(b)双重药物纳米颗粒的冷冻物图像。比例尺:200 nm。(c)图显示了在人血清中孵育48小时的MCC-DSR双NP的大小和ZETA潜力的百分比变化。(d)PBS稳定性图在30天内显示了PBS中MCC-DSR NP的大小和ZETA潜力。C中显示的数据是平均值±S.E.M。 (n = 3)。 (e)IBMDMS的代表性显微镜图像以时间依赖的方式(0H至8H)封装的荧光颗粒内化。 核用核染色。 比例尺:100μm。 (f)通过共聚焦显微镜成像的荧光纳米颗粒的细胞摄取的定量分析。 (g)IBMDMS对不同浓度的5FAM颗粒的细胞摄取的流式细胞仪分析。 显示的数据是平均值±S.E.M。 (n = 3)。 通过单向方差分析和Dunnett的多重比较测试进行统计分析。 *p <0.05,** p <0.01,*** p <0.001。C中显示的数据是平均值±S.E.M。(n = 3)。(e)IBMDMS的代表性显微镜图像以时间依赖的方式(0H至8H)封装的荧光颗粒内化。核用核染色。比例尺:100μm。(f)通过共聚焦显微镜成像的荧光纳米颗粒的细胞摄取的定量分析。(g)IBMDMS对不同浓度的5FAM颗粒的细胞摄取的流式细胞仪分析。显示的数据是平均值±S.E.M。(n = 3)。通过单向方差分析和Dunnett的多重比较测试进行统计分析。*p <0.05,** p <0.01,*** p <0.001。
摘要:纳米颗粒(NPS)引起无菌炎症,但潜在的信号通路知之甚少。在这里,我们报告说,人类单核细胞特别容易受到非晶二氧化硅NP的影响,这是通过基于飞行时间(CyTOF)的细胞仪对单细胞基于外周血单核细胞的分析,而NPS的硅烷修饰可减轻其毒性。使用人THP-1细胞作为模型,我们通过纳米级离子质谱法(Nanosims)观察到了二氧化硅NP的细胞内在化,并通过透射电子显微镜证实了这一点。脂质液滴积累也在暴露的细胞中注意到。此外,飞行时间次级离子质谱法(TOF-SIMS)揭示了质膜脂质的特定变化,包括硅胶NP暴露细胞中的磷脂酰胆碱(PC),随后的研究表明,溶血磷脂酰胆碱(LPC)的信号是易溶性的,这表明该信号的流动性是在配体。此外,我们发现硅胶在单核细胞中引起NLRP3炎性体激活,而细胞死亡通过非凋亡,脂质过氧化依赖性机制转化。一起,这些数据进一步了解了我们对无菌炎症机制的理解。关键词:细胞死亡,炎症体,质谱法,单核细胞,二氧化硅纳米颗粒I
线粒体是重要的塑料动态细胞器,它通过不同的途径在能量产生中起关键作用,并调节细胞稳态,凋亡,钙稳态和活性氧(ROS)依赖性细胞反应。线粒体完整性和代谢是几种疾病的病理生理标志。线粒体融合和裂变之间的平衡控制细胞完整性和代谢[1]。线粒体改变参与许多疾病,例如癌症,心血管疾病和神经退行性[2]。神经退行性疾病与线粒体缺陷之间的联系已很好[3-5]。线粒体动力学和活性的改变会诱导含有3(NLRP3)炎症体的pyrin域,一种细胞内促炎蛋白复合物,这是先天免疫反应的关键效应。nlrp3激活导致过度炎症,其特征在于炎症细胞因子(如caspase 1,il1ß和IL18)的过量生产[6,7]。许多研究发现了不同的炎性体复合物,其功能的调节已得到很好的特征[8,9]。NLRP3炎性体信号通路参与中枢神经系统神经炎症过程[10]。