CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
结论 • DG 的近似非常粗糙;不适用于氢键、受阻旋转、柔性分子等。 • 隐式溶剂模型非常粗糙;忽略所有定向溶剂相互作用(氢键、盐桥等)。 • 溶剂熵(疏水效应等)被完全忽略。 • 该方法每次只对一个构象异构体有效,没有构象异构体采样 它居然有效,真是令人惊讶!(正如它在数千种出版物中所做的那样……)
能带结构各点之间的散射矢量。在这方面,傅里叶变换的 QPI 图提供了拓扑绝缘体存在的首批实验证据之一,[4]因为它揭示了背向散射矢量处强度的“缺失”,正如理论所预测的那样。从理论的角度来看,QPI 图的计算主要基于模型方法,例如在拓扑绝缘体表面,[5]其中表面能带结构可以用简单的模型哈密顿量来近似。然而,一般而言,基于密度泛函的方法对于表面电子结构的实际描述是必需的,特别是杂质势,其中杂质周围的电荷弛豫在正确描述散射相移中起着重要作用。密度泛函计算的一个困难是缺陷引起的密度振荡范围非常大,可以达到几十甚至几百纳米,因此超晶胞方法实际上无法达到这个极限。这些挑战只能通过从头算格林函数嵌入方法来解决,比如 Korringa-Kohn-Rostoker(KKR)方法。作为一个应用的例子,我们参考了 Lounis 等人 [6] 对 Cu(111) 和 Cu(001) 表面上的 QPI 的计算,这是由于表面下埋藏着一个孤立杂质。这些结果表明,利用格林函数技术可以在相当大的表面积上对 QPI 图进行从头算计算。然而,对于傅里叶变换的 QPI 图,直接用格林函数卷积来表示结果是可行的[7],避免了计算大表面积中实空间图的中间步骤。在本文中,我们将探讨这个问题,并给出它在拓扑绝缘体领域的应用。在第 2 节中,我们概述了 KKR 方法中实空间和傅里叶变换 QPI 映射的形式。此外,我们讨论了多杂质实际情况的傅里叶变换 QPI,并认为多杂质问题可以用单杂质结果很好地近似。我们还讨论了扩展的联合态密度方法 (exJDOS)。在第 3 节中,我们将我们的形式应用于具有表面杂质的拓扑绝缘体 Bi 2 Te 3。这在 JuKKR 代码包中实现。[8] 最后,我们在第 4 节中进行了总结。
背景:第三级RNA结构的预测对医学领域(例如Messenger RNA [mRNA]疫苗,基因组编辑)和病毒转录物的探索很重要。尽管存在许多RNA折叠软件程序,但很少有研究仅将其关注的源头简化为病毒式Pseudoknotted RNA。这些调控假诺在基因组复制,基因表达和蛋白质合成中起作用。目的:本研究的目的是探索5个RNA折叠引擎,该发动机用于计算最低自由能(MFE)或最大期望准确性(MEA),当应用于先前使用诱变,序列比较,结构探测,结构探测,或核磁共振(NMR)的特定病毒式Pseudoknotted RNA。方法:对本研究中使用的折叠发动机进行了26次实验得出的短伪序列(20-150 nt),使用在测试软件预测准确性时很常见的指标:百分比误差,平均平方误差(MSE),敏感性,敏感性,敏感性,积极的预测值(PPV),Youden的INDEX(Youden's Intex(j)和f 1-score。本研究中使用的数据集来自包含398个RNA的pseudobase ++数据库,该数据库使用PRISMA(系统审查和荟萃分析的首选报告项目)的一组包含和排除标准进行了评估。在Mathews的参数之后,给定RNA序列内的基本配对被认为是正确或不正确的。结果:本文与以前的软件的迭代相比,与较旧的折叠引擎相比,RNA预测引擎具有更高的精度,例如PKISS。本文还报道说,当使用诸如F 1 -SCORE和PPV等指标评估时,MEA折叠软件并不总是以预测准确性的MFE折叠软件,而当应用于病毒式PseudokNotted RNA时。此外,结果表明,如果不应用辅助参数,例如Mg 2+结合,悬挂式最终选项和发夹型惩罚,则热力学模型参数将无法确保准确性。结论:这是将一套RNA折叠发动机套件应用于仅包含病毒式伪KNOTED RNA的数据集的首次尝试。本文报道的观察结果突出了不同的从头算预测方法之间的质量,同时实施了这样一种想法,即对更有效的RNA筛选更有效地了解细胞内热力学是必要的。
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
最近关于氮掺杂的hydettium hydetium hydetium hydetium the近期近气条件超导性的报道启发了大量的实验研究,结果矛盾。我们从第一个原理模拟了所报道的超导体可能的母体结构的物理特性,即luh 2和luh 3。我们表明,只有LUH 3的声子条带结构才能解释由于间质八面体位点存在氢而导致的拉曼光谱。但是,这种结构仅通过超过6 GPA的非谐调稳定。我们发现,在报告的超导体中,引人入胜的颜色变化与LUH 2的光学特性一致,LUH 2的光学特性是由未抑制式频带间等离子体的存在确定的。具有压力的等离子体蓝光,并修饰样品的颜色,而无需任何结构相变。我们的发现表明实验中的主要成分是luh 2,在八面体部位有一些额外的氢原子。在高温下,luh 2和luh 3均未3个超导。
可能有助于PDB结构中HIS224和水分子之间的氢[3]。注意到,HIS223的PKA值较低,为5.51,对周围PLN残基没有任何空间障碍,这表明HIS223可以具有HID和HIE质子化状态。因此,我们考虑了HIS223的两个质子化状态,并根据Ab Inli算FMO计算评估的总能量确定了哪些更稳定。此外,我们在这里考虑了GLU141的三种类型的质子化状态,因为该残基位于抑制剂附近,GLU141和抑制剂之间的相互作用可能会受到GLU141质子化状态的变化的显着影响。在金属蛋白酶热蛋白的先前分子模拟[7,8]中,
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
探空术比所谓的BO-MD方法更有效,可实现82%的预测准确性,而BO-MD方法在同一数据集上导致52%的正确预测。此外,还产生了四个新的合金组成来验证模型有效性。选择与BO-MD预测不同意的特定情况以增加产生结果的好处。四种合金的可塑性机制实验证实了ML模型的有效性。这种方法特别有助于设计特定的Ti合金,由于转化诱导的可塑性(TRIP)和机械孪生效应(TIP)效应的同时激活,表现出高工作硬化速率。的确,跨阶级跨行程和twip效应的组合达到了88%的预测准确性。