L. Scavuzzo,K。Aardal,A。Lodi,N。Yorke-Smith:机器学习增强分支并绑定到混合整数线性编程,ARXIV:2402.05501,2024,数学编程
计算机科学中的核心目标之一是计算事情。在高水平上,这通常是通过开发算法来实现的,这些算法将潜在复杂的任务分解为一系列简单,标准化的操作。然后可以在(经典)硬件上执行这些标准化操作。例如,现代CPU可以在短短几秒钟内执行数十亿逻辑和算术操作,因此我们拥有大量的原始计算能力。a,原始计算能力可能并不总是足够的。存在大量的计算问题,其中可伸缩性问题甚至可以阻止超级计算机变成非常大的问题大小。此类众所周知的问题是整数分解:将A(通常是大的)数字分解为𝑛lit(𝑛= log 2(log 2(𝑁)⌋+ 1)构成素数,即整数分解a -bit编号𝑁=𝐹= 0×·××𝐹 -1,使用𝐹0,。。。,𝐹 -1∈ℕprime。(1.1)
经典加密基础的基础是建立在难以内向的数学概率上的,例如离散对数和整数分解。这些问题构成了许多广泛使用算法的基础,包括Diffie-Hellman(DH)[3],ECDSA,El-Gamal和椭圆曲线(EC)[2]。但是,量子计算机的出现对这些加密系统构成了重大威胁。算法(例如Shor [1])使量子系统能够有效地解决离散对数和整数分解问题,从而破坏了这些协议的安全性。应对这些挑战,我们提出了一种基于统一根和复杂圆圈的连续对数的新型加密方法。通过利用该框架的几何和光谱特性,我们的方法为将经典的加密算法适应后的量词时代提供了强大的基础。这种方法不仅保留了传统系统的关键原则,而且还引入了对量子攻击的抗性新结构,为未来的加密设计发展铺平了道路。
抽象量子计算对加密安全性提出了令人兴奋但艰巨的挑战。各种量子计算机在攻击RSA方面的进步显然迟钝。与关键技术(例如通用量子计算机上的误差校正代码)所施加的约束相反,D-Wave特殊量子计算机的关键理论和硬件开发的发展显示出稳定的生长轨迹。量子退火是D-WAVE特殊量子计算背后的基本原理。它具有独特的量子隧道效应,可以跳出传统智能算法容易陷入的局部极端。可以将其视为具有全球优化能力的人工智能算法。本文使用纯量子算法和量子退火与经典算法相结合以实现RSA公共密钥加密攻击(分解大型Integer N = PQ),介绍了两种基于量子退火算法的技术方法。一种是将加密攻击的数学方法转换为组合优化问题或指数空间搜索
• n = pq 的整数因式分解:如果 n 适合 s 位,则对 2 s + 3 个量子位进行大约 O(s 3 log s)次运算 • 离散对数问题的类似变体也存在 ⇒ 会破坏经典 PKC(RSA、ElGamal……)
基点P =(PX,PY)。曲线上的点是整数模块。可以通过生成一个随机整数0≤k≤p -1作为私钥和计算q = [k] p = p = p +… + p作为公共密钥通过椭圆曲线点添加作为公共密钥来创建一个键对。
#vector.py import import impas intim intray导入oracledb un =“ scott” cs =“ localhost/orclpdb1” pw = getPass.getPass.getPass(f“ Enter for {un}@{cs}:”) = array.Array('d',[4.25,5.75,6.5])#64位float vector_data_8 = array.Array.Array('B',[7,8,9])#8位签名的整数Vector vector vector_data_data_bin = array = array.Array.Array.Array( oracledb.connect(user = un,password = pw,dsn = cs)as conn:cursor = conn.cursor()cursor.execute.execute(“如果存在samem sample_vector_tab”)cursor.execute.execute(“”) int8),vbin vector(24,二进制))“”)cursor.execute(“插入sample_vector_tab values(:1,:1,:2,:3,:3,:4)”,[vector_data_32,vector_data_64,vector_data_64,vector_data_8,vector_data_8,vector_data_data_data_bin] curnecter.exectectectectectectectectem.tecter.exab.excute.exectab.try * curry.tab.tab.tabry.tabry.tab)光标中的行:
印度理工学院鲁尔基分校 系别:应用数学与科学计算系 科目代码:AMC-501 课程名称:应用优化技术 LTP:3-0-0 学分:3 学科领域:PCC 课程大纲:优化简介、凸集、凸函数、数学建模、线性规划:图解法、单纯形法、线性规划中的对偶性、灵敏度分析、对偶单纯形法、整数规划问题、混合整数规划问题、无约束优化 - 牛顿-拉夫逊法、拟牛顿法、共轭梯度法、最速下降法、约束优化 - 拉格朗日法、广义递减梯度法、罚函数法、多目标优化 - 多目标优化问题、帕累托前沿、支配和非支配解、经典多目标优化方法(如加权和方法、e-约束方法)。
二进制响应值的响应数值XS矩阵或零的数据帧以及所有预测变量变量的数据框架NBSXVARS Integer用于构建每个逻辑回归模型的预测变量数。默认值是数据中的所有预测指标。neareal.params一个包含用于模拟退火的参数的列表。请参阅logicreg软件包中的函数logreg.anneal.control的帮助文件。如果缺少,则在start = 1,end = -2和iter = 50000设置默认退火参数。nbs的逻辑回归树的数量适合逻辑森林模型。h在逻辑森林中最小树的最小比例之间,必须预测1个以使预测为一个。规范逻辑。如果false,模型输出中的预测变量和相互作用得分不标准化为零和一个之间的范围。数字数量的预测变量和相互作用数量包含在模型输出中NLEAVES
过去几年,陆军航空事故不断增加,这主要是由于任务频率和复杂性增加以及资源减少。由此造成的损失(人员伤亡、金钱、设备)的严重性促使陆军安全中心指挥官要求全面审查安全隐患和后续安全控制的评估和选择方式。该项目通过开发和使用有效识别和评估控制组合的方法,将价值导向思维、蒙特卡罗模拟和整数规划相结合,以满足这一需求。整数规划生成控制组合,以最大程度地减少导致陆军航空事故的危险。使用引导方法的蒙特卡罗模拟用于模拟 100,000 个 UH-60 飞行小时内发生的事故造成的损失数量和类型。已经开发了一个价值模型来量化这些损失的严重程度。控制组合的预期绩效计算为实施这些控制措施所导致的损失严重程度的预期下降。