较高感觉皮层中的语义表示构成了强大而灵活的行为的基础。这些代表的不满是在开发过程中以无监督的方式获得的,并且在有机体的寿命中不断地成为主要的主要主导。预测处理理论表明,这些表示从预测或重建感觉输入中出现。然而,众所周知,大脑会产生虚拟体验,例如在想象力和梦中,超越了以前经验丰富的投入。在这里,我们建议虚拟体验可能与塑造皮质表示的实际感觉输入一样重要。特别是,我们讨论了两种互补学习原则,它们通过虚拟经验的产生来组织表示形式。首先,“对抗性梦”提出,创意梦支持对抗性学习的皮质实现,在这种学习中,反馈和前进途径参与了试图互相愚弄的富有成效的游戏。第二,“对比性的梦”提出,通过尝试通过对比度学习过程将神经元表示与无关因素的不相关因素的不变性与变异因素相关。这些原理与已知的皮质结构和动力学以及睡眠现象学兼容,因此提供了有希望的方向,可以解释超出经典预测性处理范式的皮质学习。
较高感觉皮层中的语义表示构成了强大而灵活的行为的基础。这些代表以无监督的方式在整个发展过程中获得,并在有机体的寿命中不断保持。预测处理理论表明,这些表示从预测或重建感觉输入中出现。然而,众所周知,大脑会产生虚拟体验,例如在想象力和梦中,超越了以前经验丰富的投入。在这里,我们建议虚拟体验可能与塑造皮质表示的实际感觉输入一样重要。特别是,我们讨论了两个通过虚拟经验来组织表示形式的互补学习原则。首先,“对抗性梦”提出,创意梦支持对抗性学习的皮质实现,在这种学习中,反馈和前进途径参与了试图互相愚弄的富有成效的游戏。第二,“对比性的梦想”提出,通过尝试通过对比度学习过程将神经元表示与变异因素无关的因素的不变性是无关的。这些原理与已知的皮质结构和动力学以及睡眠现象学兼容,因此提供了有希望的方向,可以解释超出经典预测性处理范式的皮质学习。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
本文引入了一个新的框架,用于表面分析,该框架源自形状空间上的弹性Riemannian指标的一般设置。传统上,这些指标是在沉浸式表面的无限尺寸流形上定义的,并满足特定的不变特性,从而可以比较表面模型形状保存变换,例如重新构度。我们方法的特异性是将允许转换的空间限制为变形场的预定义有限尺寸基础。这些以数据驱动方式估算,以模拟特定类型的表面变换。这使我们可以简化对相应形状空间的代表到有限的尺寸潜在空间。然而,与涉及涉及的方法形成鲜明对比。网状自动编码器,潜在空间配备了从弹性指标家族继承的非欧国人Riemannian指标。我们演示了如何有效地实现该模型以在表面网格上执行各种任务,这些任务不假定这些模型已预先注册,甚至没有一致的网格结构。我们专门验证了我们对人体形状和姿势数据的方法以及人的面部和手部扫描,例如形状注册,插值,运动转移或随机姿势产生等问题。
我们提出了非常规超导体SR 2 RUO 4中核磁共振NMR和旋转轨道效应的第一个原理研究。我们已经计算了均匀的磁化率,该磁化率与振幅中的实验非常吻合,但是,与较早的模型结果一样,我们发现计算出的硬轴是Z,与实验相反。我们还计算了所有原子的骑士移位和NMR弛豫率,并再次找到了整体良好的一致性,但是与实验相同特定特征(例如骑士移动各向异性)的重要偏差。我们的结果表明,在基于密度功能的计算中,SR 2 RUO 4中的相关性导致轨道效应低估。我们还认为,轨道极化在易感性中的相对贡献(10-15%)也是一个低估的“实验”值。我们讨论了O和Ru骑士在施加域的所有方向上跨过超导转变的令人困惑的不变性。我们表明,这一事实无法通过意外取消或旋转的散射来解释,因为它发生在某些元素超导体中。我们还指出,偶极子和轨道高铁对SR 2 RUO 4中的骑士移动的贡献很大,再加上轨道依赖性超导性的可能性,要求修改超电导状态中骑士骑士偏移的标准理论。
抽象的流行表示方法鼓励在输入上应用的转换下的特征不变性。然而,在3D感知任务中,诸如对象定位和segmen的任务中,输出自然与某些转换(例如旋转)相等。使用训练前损失函数,鼓励在某些转换下的特征等同于特征,提供了强大的自学信号,同时还保留了传输特征表示之间的几何关系信息。这可以在下游任务中改善与此类转换一样的下游任务。在本文中,我们提出了一个时空的阶段性学习框架,通过共同考虑空间和时间增强。我们的实验表明,最佳性能是通过预训练的方法产生的,该方法鼓励了对翻译,缩放和平流,旋转和场景流量。对于空间增强,我们发现,根据转换,是对比度目标或按分类目标的对比度,可以产生最佳的要求。为了利用现实世界的对象变形和运动,我们考虑了顺序的LIDAR场景对,并开发出一个基于3D场景流量的新颖的均衡性目标,从而导致整体上的性能。我们表明,在许多设置中,3D对象检测的预训练方法优于现有的模棱两可的方法。
摘要 — 机器学习模型在对未知数据集进行推理时,通常会对熟悉的组或相似的类集产生有偏差的输出。人们已经研究了神经网络的泛化以解决偏差,这也表明准确度和性能指标(例如精确度和召回率)有所提高,并改进了数据集的验证集。测试和验证集中包含的数据分布和实例在提高神经网络的泛化方面起着重要作用。为了生成无偏的 AI 模型,不仅应对其进行训练以实现高精度并尽量减少误报。目标应该是在计算权重时防止一个类/特征对另一个类/特征占主导地位。本文使用选择性得分和余弦相似度等指标研究了 AI 模型上最先进的对象检测/分类。我们专注于车辆边缘场景的感知任务,这些任务通常包括协作任务和基于权重的模型更新。分析是使用包括数据多样性差异、输入类的视点和组合的案例进行的。我们的结果表明,使用余弦相似度、选择性得分和不变性来衡量训练偏差具有潜力,这为开发未来车辆边缘服务的无偏 AI 模型提供了启示。索引术语 — 偏差、数据多样性、特征相似度、泛化、选择性得分
环境模式的提取是人类整个生命周期学习的基础,不仅在认知技能中发挥着至关重要的作用,而且在感知、运动和社交技能中也发挥着至关重要的作用。至少有两种类型的规律有助于获得技能:(1)统计、基于概率的规律,以及(2)基于序列顺序的规律。基于概率和/或基于序列顺序的规律在短时间内(从几分钟到几周)的记忆表现已在整个生命周期中得到广泛研究。然而,这种知识的长期(数月或一年)记忆表现受到的关注相对较少,而且尚未在儿童中进行评估。在这里,我们旨在测试 9 至 15 岁之间的神经典型儿童在 1 年离线期间对基于概率和基于序列顺序的规律的长期记忆表现。参与者执行了视觉运动四选一反应时间任务,旨在同时测量基于概率和基于序列顺序的规律的习得。通过在 5 小时延迟后重新测试其表现来控制短期巩固效应。一年后,他们又在同一任务上接受了重新测试,两次测试之间没有任何练习。参与者成功地掌握了基于概率和基于序列顺序的规律,并在一年的时间里保留了这两种类型的知识。成功的保留与年龄无关。我们的研究表明,基于概率和基于序列顺序的规律的表征在很长一段时间内保持稳定。这些发现为技能巩固的发展不变性模型提供了间接证据。
激光金属沉积 (LMD) 是一种增材制造技术,它吸引了业界的极大兴趣,因为它有可能将具有复杂几何形状的零件一次性制成,并修复损坏的零件,同时保持良好的机械性能。然而,该工艺的复杂性限制了它的广泛应用,因为不同的零件几何形状、策略和边界条件会在外部形状和内部缺陷方面产生非常不同的结果。此外,在工艺执行过程中监控零件质量非常具有挑战性,因为直接测量结构和几何特性大多是不切实际的。这项工作提出了一种 LMD 在线监控和预测方法,该方法利用同轴熔池图像以及工艺输入数据来估计 LMD 沉积的轨道大小。特别是,一种新颖的深度学习架构将卷积神经网络的输出(以熔池图像为输入)与标量变量(工艺和轨迹数据)相结合。评估了各种网络架构,建议使用至少三个卷积层。此外,结果表明密集层的数量和大小具有一定程度的不变性。通过使用航空航天和汽车领域的相关材料 Inconel 718 粉末通过 LMD 沉积的单轨进行的实验,证明了所提出方法的有效性。