摘要 - 软机器人表现出合规性,并具有无限的自由度。多亏了这些特性,可以利用此类机器人进行手术,康复,仿生,探索未经培养的环境和工业抓地力。在这种情况下,它们吸引了来自各个领域的学者。但是,非线性和滞后作用也给机器人建模带来了负担。遵循其灵活性和适应性,软机器人控制比刚性机器人控制更具挑战性。为了建模和控制软机器人,以成对或单独使用了大量数据驱动的方法。本评论首先简要介绍了两个用于数据驱动方法的基础,即物理模型和雅各布矩阵,然后总结了三种数据驱动方法,即统计方法,神经网络和增强学习。本评论比较了这些类别内外的建模和控制器功能,例如模型动态,数据要求和目标任务。最后,我们总结了每种方法的功能。对现有建模和控制方法的优势和局限性进行了讨论,我们预测了软机器人中数据驱动方法的未来。网站(https://sites.google.com/view/23zcb)是为此评论而构建的,将经常更新。
本文实现了一种高效算法,用于从基于物理的电池模型(例如 P2D 模型)中提取电化学阻抗谱 (EIS)。该数学方法与 EIS 的实验方法不同。在实验中,电压(电流)在很宽的频率范围内受到谐波扰动,并测量相应电流(电压)的幅度和相移。该实验方法可以在仿真软件中实现,但计算成本很高。此处的方法是从完整物理模型中确定局部线性状态空间模型。作为状态空间模型基础的四个雅可比矩阵可以通过对物理模型进行数值微分而得出。然后使用计算效率高的矩阵操作技术从状态空间模型中提取 EIS。该算法可以在瞬态过程中的某一时刻评估完整的 EIS,而与电池是否处于静止状态无关。该方法还能够分离全电池阻抗以评估部分 EIS,例如仅评估电池阳极。尽管这种部分 EIS 很难通过实验测量,但部分 EIS 为解释全电池 EIS 提供了宝贵的见解。© 2024 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,只要正确引用原始作品。[DOI:10.1149/1945-7111/ad4399]
摘要 —非线性控制分配是基于现代非线性动态逆的飞行控制系统的重要组成部分,该系统需要高精度的飞机气动模型。通常,精确实施的机载模型决定了系统非线性的消除效果。因此,更精确的模型可以更好地消除非线性,从而提高控制器的性能。本文提出了一种新的控制系统,该系统将非线性动态逆与基于分段多线性表示的控制分配相结合。分段多线性表示是通过对块矩阵的克罗内克积的新泛化,结合非线性函数的规范分段线性表示而开发的。还给出了分段多线性模型的雅可比矩阵的解析表达式。所提出的公式给出了分段多线性气动数据的精确表示,因此能够精确地模拟飞机整个飞行包线内的非线性气动特性。所得到的非线性控制器用于控制具有十个独立操作控制面的无尾飞翼飞机。两种创新控制面配置的仿真结果表明,可以实现完美的控制分配性能,与普通的基于多项式的控制分配相比,具有更好的跟踪性能。
第一章介绍本节中,包括背景,问题制定,问题限制,研究目标和收益,研究方法论和系统写作第二章理论基础,这包含支持本研究的理论。包括有关酶,酶动力学,抑制剂,微分方程系统的理论,由平衡点,雅各布矩阵,特征方程和鲁瑟维茨常规标准以及有关集成技术的理论组成的点稳定性包括可变分离酶方法和整合因子。第三章模型分析包含对模型的构建的讨论,平衡点的稳定性分析以及包含酶键和底物的乘积形成阶段阶段的数学分析。第四章模拟模拟包括一个稳定性模拟,以通过所做的分析来证明评估,以及通过提供抑制剂初始值的变化来对抑制剂的影响进行仿真。第五章结论和建议本章包含所做研究的结论以及进一步研究的发展。
摘要。维度4在密码学中首先引入了suplydular等菌菌的加密分析(SIDH),并已在包括Sqisignhd(包括Sqisign Isegeny Isegeny Isegeny Signature Signature Specation of Sqisignhd)中进行了建设性地使用。与维度2和3不同,我们不能再依靠雅各布模型及其衍生物来计算同学。在尺寸4(及更高)中,我们只能使用theta模型。罗曼·科塞特(Romain Cosset),戴维·卢比奇(David Lubicz)和达米安·罗伯特(Damien Robert)的先前作品专注于在theta模型中的necrime级别cogenties的计算(这需要在维度g中使用n g坐标)。对于加密应用,我们需要计算2个发病蛋白的链,需要在尺寸G中使用≥3g的坐标,并使用最先进的算法。在本文中,我们提出了算法,以计算2个尺寸的Abelian品种g≥1的Abelian品种的链条,其水平n = 2的theta-coordinate,在Piererick Dartois,Luciano Maino,Luciano Maino,Gi-Acomo Pope and Damien Robert grbert g = 2。我们提出了这些算法在尺寸g = 4中的进化,以计算源自卡尼的引理的椭圆曲线产物的内态 - 并应用于sqisignhd和sidh cryptanalyalysis。现在,当启动曲线的内态环在笔记本电脑的几秒钟内未知的所有NIST Sike参数时,我们都可以对SIDH进行完整的键恢复攻击。
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和特征向量使用正交转换将二次形式减少到规范形式。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。评估多个积分,并将概念应用到查找区域,量ITUME-I:矩阵10 L矩阵的矩阵等级和正常形式的矩阵等级,正常形式,与juss-jordan方法的非单明性矩阵相反,高斯 - jordan方法,线性方程系统:均匀和非同性方程式的求解系统和非良好方程式的求解方法。UNIT-II: Eigen values and Eigen vectors 10 L Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of正交转换通过正交转换到规格形式的二次形式。单位-III:微积分10 L平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的序列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单元IV:多变量演算(部分分化和应用)10 L极限和连续性的定义。部分分化:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:使用拉格朗日乘数方法的两个变量和三个变量的功能的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 寻找特征值和特征向量 利用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数求不当积分 找出有/无约束的两个变量函数的极值。 评估多重积分并应用概念寻找面积、体积 UNIT-I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法对非奇异矩阵进行逆计算,线性方程组:通过高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、利用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、利用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅在笛卡尔坐标系中)、不定积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-IV:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
生成模型一直是机器学习研究中特别受关注的一个领域,成功的模型架构极大地改进了生成模型,包括变分自编码器 (VAE)、生成对抗网络 (GAN) 和可逆神经网络 (INN) [1-3]。除其他应用外,生成模型在事件生成中的应用也得到了广泛研究 [4-6]。与马尔可夫链蒙特卡洛 (MCMC) 技术 [7-11] 相比,生成模型的优势不仅限于提高推理速度,而后者迄今为止已成为领先的 LHC 模拟和解释方法。此外,生成模型可以进行端到端训练,从而实现更全面的应用,如展开 [12-14]、异常检测 [15-19] 等等 [20]。然而,这些神经网络 (NN) 的参数空间巨大,使其能够模拟复杂的交互,但这也导致对计算资源的需求巨大。流行的 NN 架构的规模早已达到计算可行性的边界。量子机器学习 (QML) 将量子计算的强大功能引入现有的机器学习基础,以建立并利用量子优势,从而实现量子算法独有的性能提升。虽然基于门的量子计算与经典计算有很大不同,但已经构建了许多与上述经典生成网络等效的模型,包括量子自动编码器 [ 21 ] 和量子 GAN [ 22 – 27 ]。值得注意的例外是 INN [ 28 , 29 ],它们尚未转移到 QML 领域。此类网络将成为量子神经网络 (QNN) 阵列的理想补充。虽然经典 INN 中雅可比行列式的可处理性使它们能够执行密度估计,这从本质上防止了模式崩溃,但通常无法有效地计算完整的雅可比矩阵 [ 30 ]。 INN 中完全可处理的雅可比矩阵(QNN 可用)将允许高效学习主要数据流形 [31-34],为可解释的表示学习和对底层过程的新洞察开辟机会。基于耦合的 INN 架构已通过经验证明对消失梯度问题更具弹性 [28],这使它们可以直接受益于具有许多参数的深度架构。然而,到目前为止列出的许多 INN 应用已经需要大量的训练资源。目前的研究表明,量子模型可以避免这种对巨大参数空间的需求。它们在表达力方面胜过常规 NN,能够用少得多的参数表示相同的变换 [35-39]。这一理论基础得到了几个专门构建的 QML 电路实例的支持,这些电路为专门设计的问题提供了比经典解决方案更有效的解决方案 [ 40 – 43 ]。QNN 已经成功应用于相对有限的高能物理问题 [ 21 , 25 , 44 – 46 , 46 – 51 ] 以及非 QML 方法 [ 52 – 56 ]。然而,据我们所知,尚未尝试构建可逆 QNN,该 QNN 可通过其可逆性用作生成任务的密度估计器。通过这项工作,我们旨在填补与经典 INN 量子等价的剩余空白,开发量子可逆神经网络 (QINN)。我们展示了如何将 QNN 流程中的每个步骤设计为可逆的,并展示了模拟网络估计分布密度的能力。作为原理证明,我们将我们的模型应用于最重要、研究最多的高能物理过程之一的复杂模拟 LHC 数据,pp → Z j → ℓ + ℓ − j,
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
最近,已经启动了几种针对地球大气的远红外和微波遥感的新一代工具,使我们能够根据热发射技术观察大气成分。这些新技术和观察数据为将来更加专门的大气研究任务铺平了道路。我论文的动力是对解决大气遥感中出现的非线性反问题的强大版本算法的兴趣日益兴趣。提出了高分辨率辐射转移计算的检索代码PIL(对肢体发声的反转),并提出了来自红外和微波肢体声音测量测量的大气参数的重建。采用的前进模型通过考虑仪器性能和测量特征,以有效的方式模拟物理上现实的肢体发射光谱。尤其是,自动差异(AD)技术提供了快速可靠的确切JACOBIAN的实现,是远期模型的特殊优化功能。反转方法基本上是基于具有自适应(直接和迭代)数值正则化方法的非线性最小二乘框架。这些正则化技术的性能依赖于正规化参数选择方法的设计和A后部停止规则。检索误差的表征,包括平滑误差,噪声误差和模型参数误差,评估了正则化解决方案的准确性。关键错误来源,数据质量)。PILS与荷兰空间研究所(SRON)制定的检索代码之间的比较,处理辐射转移和倒置计算,并用预先确定的输入进行处理,旨在阐明实施的正确性和一致性。在正向模型中的小差异主要是由于连续吸收和辐射传递方程的整合而导致的。检索结果中差异的可能原因是所采用的不同反演方法(正则化,先验信息)和离散化的后果。通过分析合成和真实的辐射光谱,讨论了通过Telis(Terahertz和Simbillimimightimeter Limb Sounder)从气球传播测量(Terahertz和simbillimimightimeter Limb Sounder)中取出气体检索的结果。羟基自由基(OH)检索的灵敏度研究用于评估PIL的反演性能,并揭示Telis测量能力的初步期望(例如,此外,臭氧(O 3),氯化氢(HCl),碳碳