抽象的超低能离子植入已成为掺杂二维材料和超薄膜的有吸引力的方法。基于二进制碰撞近似的新的动态蒙特卡洛计划Imintdyn允许对低能植入培养物和目标组成变化的可靠预测,以及对高能光离子散射的有效模拟。为了证明这些预测和模拟的质量,我们提出了一个模型案例实验,在该实验中,我们将W离子植入具有低(10 keV)和超低(20 eV)离子能量的四面体非晶碳中,并分析了W植入W具有高分辨率的Rutherford redScatter-Scattrant-ReClanter-Files。使用新的Imintdyn程序将该实验与对实验的离子固定相互作用的各个方面进行了完整模拟。一种独特的新型模拟选项,也与植入2D材料有关,是将空缺作为具有动态空位产生和歼灭的目标物种。虽然忽略空缺形成的模拟不能再现所测量的植入物,但我们发现模拟和测量的HR-RBS光谱之间有很好的一致性。我们还证明了同时弱碰撞在低弹丸能量下二进制碰撞近似中的重要作用。
粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
摘要 使用液态氙作为靶材的探测器被广泛应用于稀有事件搜索。关于相互作用粒子的结论依赖于对沉积能量的精确重建,而这需要借助放射源对探测器的能量标度进行校准。然而,微观校准,即将激发量子数转换为沉积能量,也需要充分了解在液态氙中产生单个闪烁光子或电离电子所需的能量。这些激发量子的总和与靶材中沉积的能量成正比。比例常数是平均激发能量,通常称为 W 值。在这里,我们展示了在带有混合(光电倍增管和硅光电倍增管)光电传感器配置的小型双相氙时间投影室中通过电子反冲相互作用对 W 值进行测量的方法。我们的结果基于在 O (1 − 10 keV) 处使用内部 37 Ar 和 83m Kr 源以及单电子事件进行的校准。我们得到的值为 W = 11 . 5 + 0 . 2 − 0 . 3 ( syst .) eV,统计不确定性可忽略不计,低于之前在这些能量下测量的值。如果得到进一步证实,我们的结果将与模拟液态氙探测器对粒子相互作用的绝对响应相关。
对于 Ge 光谱测定,应用最新技术,与无屏蔽情况相比,背景可降低 5 到 6 个数量级。这种降低系数适用于连续背景光谱,也适用于线背景,如图 1 所示,这是海德堡-莫斯科双重 beta 衰变实验 [1] 的 Ge 探测器。图 1 的上部光谱是在 MPI-Kemphysik [2] 的低级实验室中无屏蔽测量的,而下部光谱是在 Gran Sasso 实验室 [3] 的纯铅屏蔽中测量的。要实现如此大幅的背景降低,只有非常仔细地选择探测器和屏蔽材料以获得低放射性、尽可能缩短晶体和这些材料的宇宙射线曝光时间、在组装阶段进行酸性表面清洁和洁净室条件、通过覆盖层对宇宙射线进行强力屏蔽以及在测量过程中完全抑制氡。通过这些预防措施,几个月的测量时间可以达到几十 n Bq/kg 的灵敏度。对于样品周转时间短得多的正常实验室工作,测量任务可能只需要较少的努力就足够了。如果我们比较图 1 所示光谱的典型检测限(根据 DIN 25482-5 [4] 的 d.l.),例如 250 keV,假设背景连续(检测到的峰值下没有线背景)和 1 小时的测量时间,这一点就变得显而易见了。结果只是低了 34 倍 d
便于 TID 测试。主要优点是,与放射源(无需担心处理放射性物质)或粒子束(通常是重型装置,维护要求高)相比,使用 X 射线发生器更容易管理辐射安全问题。这是因为光子的能量相对较低,可以通过防护罩轻松阻止,而且 X 射线发生器可以轻松关闭。X 射线发生器的另一个优点是光子能量足够低,可以轻松准直。因此,可以使用 ARACOR 之类的 10 keV 发生器照射晶圆上的单个设备。与 60-Co 或铯 137 源相比,X 射线发生器还提供相对较高的剂量率,从而缩短了测试时间。在系统设计期间,这允许快速(一天内)对同一类型的多个组件进行 TID 灵敏度表征(筛选),以便获得 TID 硬度的初步估计值。最后,与放射源或粒子束相比,X 射线发生器的购买和维护成本更低。低能 X 射线发生器的主要缺点是光子穿透深度低,必须在晶圆级或无盖器件上进行辐射,而更高能量的辐射源对于封装器件或系统级(电子板)的辐射测试仍然是强制性的。其他缺点
SEP 能量从超热能(几千电子伏)到相对论能(质子和离子为几千兆电子伏)对空间环境表征具有重要影响。它们与太阳耀斑和 CME 驱动的冲击波一起从太阳发射。SEP 事件构成严重的辐射危害,对依赖航天器的现代技术以及太空中的人类构成威胁。此外,它们还对航空电子设备和商业航空构成威胁。因此,必须制定缓解程序。HESPERIA H2020 EU 项目开发了新型 SEP 事件预测工具,并高度依赖于这些工具来缓解 SEP 事件。这些预测工具以及针对它们所预测事件的科学研究自然存在一些共同的局限性,例如基础数据的可用性和质量。可以说,空间天气应用最重要的数据源之一是 1995 年发射的 NASA/ESA SOHO,它自 1996 年以来一直绕拉格朗日点 L1 运行。该航天器的科学有效载荷由几台远程和现场仪器组成,包括 EPHIN,这是一台视场约为 83 的粒子望远镜,几何因子为 5.1 cm2sr,可测量能量在 0.25 至 10.4 MeV 之间的电子以及能量范围在 4.3 至 53 MeV/核子以上的质子和氦
1。范围71 1.1此实践涵盖了使用72扫描电子显微镜/能量分散X射线光谱法(SEM/EDS)的建议技术和程序,用于73对地质材料的法医分析,包括土壤,岩石,沉积物和材料74,从它们中得出(例如,Concrete)。75 1.2 SEM/EDS的理论基础涵盖了许多文本,例如76扫描电子显微镜和X射线微分析(1)。本文档介绍了样本77处理和准备,仪器工作条件,光谱数据收集,78评估EDS数据质量,EDS光谱的解释,用于鉴定79个无机地质材料,通过SEM成像的文献记录和样本比较的标准80。81 1.3此标准旨在由有能力的法医科学从业人员使用82个必要的正规教育,纪律特定的培训(请参阅实践E2917),而83个表现出熟练程度的熟练程度。84 1.4 SI单位中所述的值应被视为标准。避免了其他单元,85个,但通常以千元电子伏特(KEV)单位报告光子能量,数据收集86个,以每秒计数(CPS)(CPS),并且元素重量百分比87(wt。%)。88 1.5此标准不适合通过89 SEM/ED来表征建筑材料来评估工程特性。这些提供了以下内容(C1723,90
可以轻松地从指示信号的阳极像素中确定。确定相互作用深度有两种可能性。第一个是使用阴极和阳极像素之间的信号比。由于短像素效应,阳极像素的诱导信号几乎不受相互作用深度的影响,而在平面阴极上诱导的信号直接取决于相互作用的深度。因此,阴极与阳极的信号比可以是相互作用深度的索引。第二种可能性是使用电子迁移时间,可以从诱导信号的脉冲形状确定。以前的可能性很难确定多个相互作用位置,而后者则适合同时确定它们。在包括SI,CDTE和TLBR在内的半导体材料中662 KEV Gamma射线的康普顿散射的线性衰减系数分别为0.18、0.37和0.47 cm -1。这些值是从NIST XCOM处的光子横截面数据计算得出的。(14),由于TLBR的线性衰减系数最高,因此TLBR有望用于构建具有高检测效率的康普顿成像仪。在这项研究中,我们使用制造的像素化TLBR半导体检测器来证明康普顿成像实验,其中使用电子迁移时间确定相互作用深度。我们还讨论了确定相互作用点的顺序顺序的策略,这对于基于康普顿成像估算入射伽马射线方向很重要。
在低电子能量的扫描电子显微镜(SEM)中,损伤诱导的电压改变(DIVA)对比度机制已作为一种快速且方便的方法,可以直接可视化硝酸盐(GAN)中能量离子辐照引起的电阻率的增加。在覆盖有金属面膜的蓝宝石上外上植物生长的gan层,并在600 keV能量下受到He 2 +辐射的约束。在不同的电子束电流和扫描速度下,在SEM上成像样品横截面处的二维损伤曲线。通过电子束照射沉积的累积电荷的增加观察到了图像对比的逐渐发展,以最终达到与GAN离子辐射部分的局部电阻率相关的对比度的饱和水平。提出的方法允许人们直接可视化离子辐照区域,即使是由于离子损伤导致的最低电阻率变化,即用离子辐照后,甘恩的所有级别的绝缘层堆积。考虑到不可能将湿化学的蚀刻技术应用于GAN,它使提出的技术成为基于GAN-基于GAN-基于电子设备的高度抗性和绝缘区域的可视化方法。提出的作品的主要目的是更深入地了解GAN中的Diva对比,特别强调讨论栅格速度和电子束电流的作用,即电荷堆积的细节样品表面。
光学集体汤姆逊散射用于诊断伦敦帝国理工学院 Magpie 脉冲功率发生器的磁化高能密度物理实验。该系统使用来自 Nd:YAG 激光的 2 次谐波的放大脉冲(3 J、8 ns、532 nm)来探测各种高温等离子体物体;密度在 10 17 -10 19 cm -3 范围内,温度在 10 eV 到几 keV 之间。散射光从等离子体内 100 µ m 级体积中收集,然后成像到光纤阵列上。多个收集系统从不同方向观察这些体积,同时使用不同的散射 K 矢量(和不同的相关 α 参数,通常在 0.5 – 3 范围内)进行探测,从而可以独立测量大量等离子体流的不同速度分量。光纤阵列与带有门控 ICCD 的成像光谱仪耦合。该光谱仪配置为观察集体汤姆逊散射光谱的离子声波 (IAW)。用理论谱密度函数 S ( K , ω ) 拟合光谱可测量局部等离子体的温度和速度。拟合受到激光干涉仪对电子密度的独立测量以及不同散射矢量的相应光谱的限制。这种 TS 诊断已成功应用于广泛的实验,揭示了磁化冲击、旋转等离子体射流和内爆线阵列内的温度和流速转变,以及提供磁重联电流片内漂移速度的直接测量。I. 简介