量子网络有望为许多破坏性应用提供基础架构,例如EOCIENT长距离量子通信和分布式量子计算1,2。这些网络的中心是使用光子通道之间在遥远节点之间分布纠缠的能力。最初开发用于量子传送3,4和Bell9s不平等的无漏洞测试5,6,最近也对电信FBR进行了纠缠分布,并回顾性7,8。然而,为了完全使用长距离量子网络链接的纠缠,必须知道它在纠缠状态衰变之前在节点上可用。在这里,我们证明了在FBRE链路上产生的两个独立捕获的单个rubidium原子之间的纠缠,长度高达33)km。为此,我们在建筑物400)中的两个节点中生成Atom3photon纠缠,并使用极化量子化的量子频率转换9。长FBR将光子引导到钟形测量设置,其中成功的光子投影测量预示了原子10的纠缠。我们的结果表明,纠缠分布在电信FBRE链接上的可行性有用,例如,对于独立于设备的量子键分布11313和量子中继器协议。提出的工作代表了实现大规模量子网络链接的重要步骤。
自由空间光学(FSO)通信的最新进步正在使卫星微型化和数据传输速率取得突破。Cubeisl激光通信终端(LCT)是德国航空航天中心(DLR)的开发项目,将在2025年推出后以100 Mbps的形式展示100 Mbps的卫星间链接,并以1 Gbps的链接展示。该技术旨在将自己确立为有效的立方体通信的尖端解决方案,从而提供高数据速率。为了验证其能力,该终端在143公里的FSO连接中进行了严格的测试,在加那利群岛的La Palma和Tenerife之间进行了严格的联系。欧洲航天局的光学地面站模仿了下行链路,而两个LCT之间的通信模拟了卫星间链接。本文概述了立方体LCT的当前发育阶段,并提出了其水平链接演示的结果。
摘要 2009 年 6 月 10 日,一架捷星航空空客 A330 飞机(注册号 VH-EBF)的机组人员在从日本大阪飞往昆士兰州黄金海岸时,发现右主挡风玻璃底部有火焰。火灾源于挡风玻璃加热系统的电气连接处。机组人员扑灭了火灾,航班改道飞往关岛。澳大利亚交通安全局的调查结论是,右挡风玻璃过热故障与电连接器接线盒主体内使用聚硫密封剂 (PR1829) 有关。该密封剂的使用导致接线盒内出现异常情况,导致挡风玻璃加热系统运行时产生意外的电加热效应。结果,这发展为密封剂热分解并引发局部火灾。在 VH-EBF 事故发生后,其他空客 A330 和 A320 飞机也报告了类似的挡风玻璃过热事件。飞机制造商对这些挡风玻璃进行技术检查后得出结论,接线盒内的编织线相互接触以及 PR1829 密封剂的意外迁移可能共同引发了所报告的事件。飞机制造商的安全措施包括一项计划,以识别和更换电连接器接线盒组件中使用 PR1829 聚硫密封剂生产的所有挡风玻璃。该计划于 2010 年初启动,并扩展到更换全球空客机队中的大约 1,500 块挡风玻璃。ATSB 已获悉,由于整个机队的挡风玻璃更换计划完成情况有限,欧洲航空安全局 (EASA) 正在考虑实施适航指令 (AD),要求所有适用空客飞机的欧洲运营商遵守空客挡风玻璃更换计划。 ATSB 还获悉,澳航集团所有适用飞机的挡风玻璃更换计划已于 2011 年 4 月完成,安装在其他澳大利亚运营的 A330 飞机上的挡风玻璃不受更换计划的影响。
Mohamed Benyoucef, h Yong-Heng Huo, b,c Sven Höfling, f Qiang Zhang, b,c,d Chao-Yang Lu, b,c,i, * 和 Jian-Wei Pan b,c, * a 中国科学技术大学,网络空间安全学院,合肥,中国 b 中国科学技术大学,合肥微尺度物质科学国家实验室,现代物理系,合肥,中国 c 中国科学技术大学,中科院量子信息与量子物理卓越中心,上海,中国 d 济南量子技术研究所,济南,中国 e 中国科学院,上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海,中国 f 维尔茨堡大学,技术物理,物理研究所和威廉康拉德伦琴复杂材料系统中心,维尔茨堡,德国 g 奥尔登堡大学,物理研究所,德国奥尔登堡 h 卡塞尔大学纳米结构技术与分析研究所,CINSaT,德国卡塞尔 i 上海纽约大学-华东师范大学物理研究所,中国上海
量子密钥分布(QKD)是一种创新技术,用于在空间分离的用户中安全地分发加密密钥[1,2]。它基于对单个量子状态的随机选择位,然后对这些位进行独立的测量。使用经典的后处理技术和经典的通信渠道,可以通过远程各方(通常称为Alice和Bob)来解密安全且共享的秘密密钥。许多实验表明QKD现在是一种成熟的技术[3-7]。QKD协议可以分为两个广泛的类别:离散变量(DV)和连续变量(CV)QKD [1,2]。在前者中,与单光子检测器一起使用了一组离散的量子状态[1,2],而在后者中,一组更广泛的状态与连贯的检测一起使用[8]。CV-QKD最近引起了很大的关注,因为它可以通过可以在室温下运行的常规电信组件来实现,从而实现了与当前网络基础架构兼容的具有成本效益的实施。特别是,CV-QKD可以在大都市网络中提供更高的秘密关键率[1,2]。此外,与DV-QKD相比,CV-QKD可以通过使用光子积分电路(PICS)进行批量生产,因为相干接收器可以以更轻松的方式集成[9]。在安全性方面,CV-QKD已被证明是可靠的,可以针对一般的集体攻击[10-12]。最后,在[21,22]中还研究了CV-QKD和经典信号的共存和经典信号。为了避免由于局部振荡器(LO)和检测器引起的安全漏洞,可以考虑使用TRUE LO [13,14]和测量设备独立的(MDI)[15,16]方案。在实验中,最近实现了CV-QKD的高速传输距离,高达202.81 km [17],高速高达63.7 MB S-1 [18]和高安全性MDI量子密码[15,19,20]。多核纤维(MCF)将出于多种原因在未来的古典沟通中发挥基本作用。首先,MCF可以解决即将到来的网络容量短缺[23]。理论上,可实现的
拥有多个出入口的组织很难确保未经授权的人员不会带走公司的笔记本电脑。在门口拦住每位员工以确保他/她没有携带未分配给他的公司笔记本电脑是不切实际的——想象一下那长长的队伍!笔记本电脑跟踪系统是一种基于 RFID 的多处理解决方案,可帮助跟踪组织内笔记本电脑的移动,以确保没有未经授权的人员带走公司的笔记本电脑。笔记本电脑跟踪系统可帮助组织控制其笔记本电脑的移动。资产跟踪系统具有两项不同的功能: 资产识别和标记 跟踪笔记本电脑的移动。资产移动跟踪以 24x7x365 为基础进行,并且记录每次资产移动。在资产移动期间,每次出现异常时,都会在相关位置触发警报,以防止或仔细检查此类移动异常。从资产跟踪数据库生成分析和信息报告,帮助组织控制其资产功能识别活动: 创建笔记本电脑主数据库 创建员工主数据库 将笔记本电脑分配给员工
摘要 2005 年 8 月 1 日,美国西部标准时间大约 17:03,一架波音公司 777-200 飞机(B777)注册号为 9M-MRG,正在执行从珀斯飞往马来西亚吉隆坡的定期国际客运航班。机组人员报告称,在爬升过程中,当飞机爬升至飞行高度 (FL) 380 时,他们在飞机的发动机指示和机组警报系统 (EICAS) 上观察到了低空速警告。同时,飞机的侧滑/滑行指示器在主飞行显示器 (PFD) 上偏转到最右位置。PFD 空速显示器随后显示飞机同时接近超速限制和失速速度限制。飞机俯仰并爬升至大约 FL410,指示空速从 270 节降至 158 节。失速警告和摇杆装置也启动了。飞机返回珀斯,平安着陆。
拥有多个出入口的组织很难确保未经授权的人员不会带走公司的笔记本电脑。在门口拦住每位员工以确保他/她没有携带未分配给他的公司笔记本电脑是不切实际的——想象一下那长长的队伍!笔记本电脑跟踪系统是一种基于 RFID 的多处理解决方案,可帮助跟踪组织内笔记本电脑的移动,以确保没有未经授权的人员带走公司的笔记本电脑。笔记本电脑跟踪系统可帮助组织控制其笔记本电脑的移动。资产跟踪系统具有两项不同的功能: 资产识别和标记 跟踪笔记本电脑的移动。资产移动跟踪以 24x7x365 为基础进行,并且记录每次资产移动。在资产移动期间,每次出现异常时,都会在相关位置触发警报,以防止或仔细检查此类移动异常。从资产跟踪数据库生成分析和信息报告,帮助组织控制其资产功能识别活动: 创建笔记本电脑主数据库 创建员工主数据库 将笔记本电脑分配给员工
拥有多个出入口的组织很难确保未经授权的人员不会带走公司的笔记本电脑。在门口拦住每位员工以确保他/她没有携带未分配给他的公司笔记本电脑是不切实际的——想象一下那长长的队伍!笔记本电脑跟踪系统是一种基于 RFID 的多处理解决方案,可帮助跟踪组织内笔记本电脑的移动,以确保没有未经授权的人员带走公司的笔记本电脑。笔记本电脑跟踪系统可帮助组织控制其笔记本电脑的移动。资产跟踪系统具有两项不同的功能: 资产识别和标记 跟踪笔记本电脑的移动。资产移动跟踪以 24x7x365 为基础进行,并且记录每次资产移动。在资产移动期间,每次出现异常时,都会在相关位置触发警报,以防止或仔细检查此类移动异常。从资产跟踪数据库生成分析和信息报告,帮助组织控制其资产功能识别活动: 创建笔记本电脑主数据库 创建员工主数据库 将笔记本电脑分配给员工
摘要 2008 年 10 月 7 日,一架空客 A330-303 飞机(注册号 VH-QPA,航班号为澳航 72)从新加坡起飞,执行定期客运服务,飞往西澳大利亚珀斯。当飞机在 37,000 英尺的高度巡航时,飞机的三个大气数据惯性参考装置 (ADIRU) 之一开始向其他飞机系统输出所有飞行参数的间歇性错误值(尖峰)。两分钟后,由于迎角 (AOA) 数据出现尖峰,飞机的飞行控制主计算机 (FCPC) 命令飞机俯冲。机上 303 名乘客中至少有 110 人和 12 名机组人员中有 9 人受伤;其中 12 名乘客受重伤,另有 39 人送往医院接受治疗。虽然 FCPC 算法处理 AOA 数据通常非常有效,但它无法处理一个 ADIRU 的 AOA 出现多个峰值且间隔 1.2 秒的情况。该事件是 A330/A340 飞机超过 2800 万飞行小时中唯一已知的因该设计限制导致俯冲命令的例子,飞机制造商随后重新设计了 AOA 算法,以防止再次发生相同类型的事故。每个间歇性数据峰值可能都是在 LTN-101 ADIRU 的中央处理器 (CPU) 模块将一个参数的数据值与另一个参数的标签相结合时产生的。故障模式可能是由