最近的高级深度学习技术显示了各种领域的有希望的结果,例如计算机视觉和自然语言处理。深度神经网络在监督学习中的成功在很大程度上依赖大量标记的数据。但是,由于标签和隐私问题的成本等各种原因,以目标标签获得标记的数据通常是具有挑战性的,这些原因挑战了现有的深层模型。尽管如此,使用不精确监督的数据相对容易,即具有与目标任务相关的标签/标签。例如,社交媒体平台上有数十亿个具有自定义标签的帖子和图像,这些帖子和图像不是目标分类任务的确切标签,但通常与目标标签有关。有望利用这些标签(不精确的监督)及其与目标类别的关系来生成标记的数据以促进下游分类任务。但是,对此的工作非常有限。因此,我们研究了一个新的问题,该问题是通过不精确监督标记的数据生成。我们提出了一个名为Addes的新颖生成框架,可以通过通过不精确的监督和不固有的监督和目标类别之间的关系从数据中学习,可以合成目标分类任务的高质量LA。图像和文本数据集的实验结果演示了提出的添加的有效性,以生成来自不精确监督的现实标记数据,以促进目标分类任务。
生成AI工具的兴起引发了有关AI生成内容的标签的辩论。然而,此类标签的影响仍然不确定。在我们和英国参与者之间进行了两个预先核实的在线实验(n = 4,976),我们表明,尽管参与者并未将“ AI生成”等同于“ false”,但标记为AI生成的标签降低了他们所感知的准确性,并降低了他们的准确性,并且参与者愿意分享他们,无论是在headline是否是由True of True of True of True of True of True of True of True of Flunans或An an Humans或Anii创建的。标签标题为AI生成的影响的影响是将其标记为假的三倍。这种AI的厌恶是由于预期被标记为AI生成的头条的期望完全由AI撰写,没有人为监督。这些发现表明,应谨慎对待AI生成的内容的标签,以避免对无害甚至有益的AI生成的内容的意外负面影响,并且有效的标签部署需要透明度就其含义。
作者贡献:MM 设计、开展实验、分析数据、撰写初稿;LL、PY、ADM、JC、EP 和 RCR 贡献了宝贵的材料和数据分析,DC 和 JES 指导了这项研究。
Vijaykumar Hulikal Bioorganics and Applied Materials Pvt Ltd. B64/1,Licross,III Stage,PIA,Peenya Bangalore-560 058 电子邮件:vijay.hulikal@bioorganics.biz 摘要 过去几十年来,稳定同位素标记化合物已被来自各个生物医学研究领域的科学家合成和利用。药物代谢科学家和毒理学家有效地利用了用氘和碳-13等稳定同位素标记的化合物来更好地了解药物的分布及其在目标器官毒性中的潜在作用。稳定同位素标记技术与质谱和核磁共振 (NMR) 光谱的结合可以快速获取和解释数据,从而促进了这些稳定同位素标记化合物在吸收、分布、代谢和排泄 (ADME) 研究中得到更广泛的应用。可以通过用氘原子直接交换氢原子(与碳原子结合)来标记分子。由于这些交换反应通常可以直接在目标分子或合成的后期中间体上进行,并且可以使用来自重水的含氘试剂作为氘源,因此该方法对于合成氘代有机化合物特别有效。可以通过卤素/氘交换、还原氘化和其他几种方法将氘插入分子中。近年来,实验室微波设备的发展导致了大量关于通过 H/D 交换制备氘代物质的研究。将介绍 H/D 交换反应和氘标记药物实体的示例。
抽象的替代建模对于参数微分方程系统具有很大的实用性。与经典数值方法相反,使用基于物理学的深度学习方法为这种系统构造模拟器是一个有希望的方向,因为它具有处理高维度的潜力,这需要最大程度地减少训练的随机样本损失。然而,随机样品引入了统计误差,这可能成为近似和高维问题的近似值的主要误差。在这项工作中,我们提出了一种深层自适应采样方法,用于对低规范性参数微分方程的替代建模,并说明了自适应采样的必要性以构建替代模型。在参数设置中,剩余损耗功能可以视为空间和参数变量的不均衡概率密度函数(PDF)。与非参数设置相反,可以使用分解的关节密度模型来减轻参数空间引起的困难。PDF通过深层生成模型近似,从中生成新样品并将其添加到训练集中。由于新样品与残留诱导的分布相匹配,因此重新定义的训练集可以进一步减少当前近似解决方案中的统计误差
成像技术的最新进展,用于产生大量高分辨率3D图像,尤其是Brainbow等多型标记技术,允许在密集的大脑中对邻近神经元的不良分化。这首先可以从光学显微镜图像中研究许多神经元之间的连通性。但是,缺乏可靠的自动化神经形态重建,使数据分析成为提取神经科学中丰富信息学的瓶颈。已经提出了基于超级氧基的神经元分割方法来解决此问题,但是,在最终分割中出现的大量错误阻碍了先前的方法。在本文中,我们提出了一种新型的无监督方法来追踪来自多光谱脑弓图像的神经元,该方法防止了分割误差并使用两种创新来追踪连续性误差:首先,我们采取了基于高斯混合模型的聚类策略,以改善为下一步骨骼提供准确的分离色的色彩通道。然后,提出了一种骨架图方法,以允许神经元树拓扑中的不连续性识别和区域。我们发现,这些创新可以比当前的最新方法更好地表现,从而导致更准确的神经元追踪结果接近人类专家注释。
I。 [8] - [12]。最近已将其用于DNA中数据存储的组合编码研究[13] - [17]。最初以从统一和独立样本收集不同的优惠券来构建,CCP研究了收集所有不同优惠券所需的样品数量的分布。传统上,CCP涉及n个不同的均衡优惠券,在每个样本中,单个优惠券都会重复。在这种情况下,至少一次对每个优惠券进行采样所需的预期样本数为n·hn≈nlog n,其中h n是n -th谐波数。CCP的变体已出现以建模复杂的现实世界系统。 这样的变体[7]是每个优惠券具有其自己的采样概率p i的位置。 另一种变体是仅重新要求r差异优惠券[18] - [21],而不是所有n张优惠券。 此问题称为部分CCP,在几种情况下进行了探索,特别是用于优化收集过程或估计优惠券亚集的概率。 对于该变体,已知样品的预期数为[19]:n·p r - 1 i = 0 1 n -i = n·(h n -h n -h n -n -r)。 部分恢复也与DNA中数据存储的RAM实现有关[22] - [24]。 我们已出现以建模复杂的现实世界系统。这样的变体[7]是每个优惠券具有其自己的采样概率p i的位置。另一种变体是仅重新要求r差异优惠券[18] - [21],而不是所有n张优惠券。此问题称为部分CCP,在几种情况下进行了探索,特别是用于优化收集过程或估计优惠券亚集的概率。对于该变体,已知样品的预期数为[19]:n·p r - 1 i = 0 1 n -i = n·(h n -h n -h n -n -r)。部分恢复也与DNA中数据存储的RAM实现有关[22] - [24]。我们此问题的另一个概括是带有组图的CCP [25] - [27]。这种概括考虑了场景,在这种情况下,每个样本中没有收集单个优惠券,而是收集优惠券的随机子集。每个样品的大小可能是恒定k或随机变量(RV)k。一个人有兴趣表征所需的子集数量的分布,直到在这些样本中至少有一个优惠券中绘制每个优惠券为止。
胶囊网络是一种近期出现的新型深度网络架构,已成功应用于医学图像分割任务。这项工作扩展了胶囊网络,使其能够通过自监督学习进行体积医学图像分割。与以前的胶囊网络相比,为了改善权重初始化问题,我们利用自监督学习进行胶囊网络预训练,其中我们的借口任务通过自重建进行优化。我们的胶囊网络 SS-3DCapsNet 具有基于 UNet 的架构,带有 3D 胶囊编码器和 3D CNN 解码器。我们在 iSeg-2017、Hippocampus 和 Cardiac 等多个数据集上的实验表明,我们的自监督预训练的 3D 胶囊网络远远优于以前的胶囊网络和 3D-UNets。代码可在此处获得。1
本文由DigitalCommons@umc的特殊收藏品带给您免费和开放访问。已被DigitalCommons@umc的授权管理员纳入MD论文。有关更多信息,请联系DigitalCommons@unmc.edu。
摘要。表达标记蛋白的稳定细胞系和动物模型是研究细胞和分子行为的重要工具。已经应用了几种分子生物学技术来建立表达标记蛋白的细胞系,并取得了不同程度的成功和效率。在这里,我们应用 CRISPR/Cas9 将标记蛋白敲入内源基因位点的 5'UTR。通过这种 5'UTR 靶向敲入策略,建立了表达 Arl13b-Venus、Reep6-HA 和 EGFP-alpha-tubulin 的稳定细胞系,在抗生素选择的细胞中效率高达 50% 至 80%。敲入蛋白的定位与野生型细胞中内源蛋白的定位相同,并表现出均质表达。此外,从内源启动子敲入的 EGFP-alpha-tubulin 的表达在长期培养中是稳定的。我们进一步证明荧光信号足以进行长时间延时成像。在整个延时成像过程中,荧光信号清晰可见,并显示出特定的亚细胞定位。总之,我们的策略表明 5'UTR 是生成细胞系的合适位点,用于在哺乳动物细胞中稳定表达来自内源位点的标记蛋白。