抽象的替代建模对于参数微分方程系统具有很大的实用性。与经典数值方法相反,使用基于物理学的深度学习方法为这种系统构造模拟器是一个有希望的方向,因为它具有处理高维度的潜力,这需要最大程度地减少训练的随机样本损失。然而,随机样品引入了统计误差,这可能成为近似和高维问题的近似值的主要误差。在这项工作中,我们提出了一种深层自适应采样方法,用于对低规范性参数微分方程的替代建模,并说明了自适应采样的必要性以构建替代模型。在参数设置中,剩余损耗功能可以视为空间和参数变量的不均衡概率密度函数(PDF)。与非参数设置相反,可以使用分解的关节密度模型来减轻参数空间引起的困难。PDF通过深层生成模型近似,从中生成新样品并将其添加到训练集中。由于新样品与残留诱导的分布相匹配,因此重新定义的训练集可以进一步减少当前近似解决方案中的统计误差
主要关键词