记录的版本:此预印本的一个版本于2024年9月1日在Chaos,Solitons&Fractals发表。请参阅https://doi.org/10.1016/j.chaos.2024.115241。
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
两片石墨烯以扭曲的方式堆叠在一起,形成一个系统,该系统最近引起了人们的极大兴趣,因为它具有令人着迷的电子特性,这些特性通常出现在由此产生的莫尔超晶格的尺度上,而莫尔超晶格通常比石墨烯晶格常数大 10 到 100 倍。特别是对于小的扭曲角度,莫尔超晶格常数在 10-20 纳米范围内,这使得扫描探针显微镜 (SPM) 成为研究扭曲双层系统的理想工具。通过本应用说明,我们展示了具有纳米级横向分辨率的 attoAFM I 低温显微镜如何配备先进的 AFM 模式,如导电尖端原子力显微镜 (ct-AFM) 和压电响应力显微镜 (PFM),可用于探索扭曲双层的电气和机电特性。
摘要Moiré超级晶格是通过精确堆叠范德华(VDW)层设计的,对探索密切相关的1-4和拓扑现象的巨大承诺具有巨大的希望。但是,这些应用已通过常见的制备方法阻止了:苏格兰胶带去角质单层的撕裂7。它具有低效率和可重复性8,以及扭曲角度不均匀性,界面污染9,微米尺寸8的挑战,以及在升高温度下脱离twist的趋势10。在这里,我们报告了一种有效的策略,可以构建具有高产量吞吐量,接近统一的收益率,原始接口,精确控制的扭曲角度和宏观尺度(至百万计)具有增强的热稳定性的高度一致的VDWMoiré结构。我们进一步证明了各种VDW材料的多功能性,包括过渡金属二甲化物,石墨烯和HBN。Moiré结构的膨胀尺寸和高质量的大小和高分辨率映射可将相互空间回折的晶格和具有低能电子衍射(LEED)和角度分辨光发射光谱光谱光谱(ARPES)的Moiré迷你带结构进行高分辨率映射。该技术将在基本研究和互惠设备的大规模生产中都有广泛的应用。主要的莫伊尔超晶格是由两个晶格晶格平面之间的界面干扰引起的,这些晶格晶格平面与晶格常数和/或对齐角不同。具有可调的带填充和掺杂条件,Moiré超级晶格成为研究电子11,Ickitons 12,Solitons 13和拓扑带结构的集体行为的多功能平台。6,14在特定的扭曲角度(即范德华(VDW)双层界面的魔法角度),这些超级峰值大大降低了电子动能,从而使库仑相互作用占主导地位,从而促进了强电子相关性,从而导致了FERMI水平附近的平坦电子带。15,16除了双层外,最近的实验发展正在探索混合尺寸系统中的Moiré系统,具有更健壮的超导性和更丰富的兴奋性物理学16-19。例如,为扭曲的石墨烯/石墨结构展示了魔术角的Van Hove奇异性。20在石墨烯/石墨系统上的最新传输测量图说明了单个准二维杂交结构的形成,这是通过栅极可调的Moiré电位和石墨表面状态组合的21,22,其中散装晶体的性质被超级晶体势能调整为在界面处的超级乳势。
▶KeyGen将其作为输入安全参数λ并输出键(PK,SK),▶ENC将作为输入为输入public键pk和message m and a the Message m and optups c = eng(pk,m),▶dec作为输入秘密键SK和cipher c和cipher c和cipher c and a cipher c and a c and a c and a c and a c and c and optucs m = dec,sk,c),c),
763–840(1994)。[2] Kallin,C。&Berlinsky,J。手性超导体。众议员prog。 物理。 79,054502(2016)。 [3] Stewart,G。R.铁化合物中的超导性。 修订版 mod。 物理。 83,1589–1652(2011)。 [4] Kenzelmann,M。Pauli受限的超导体中的异国情调磁状态。 众议员prog。 物理。 80,众议员prog。物理。79,054502(2016)。[3] Stewart,G。R.铁化合物中的超导性。修订版mod。物理。83,1589–1652(2011)。 [4] Kenzelmann,M。Pauli受限的超导体中的异国情调磁状态。 众议员prog。 物理。 80,83,1589–1652(2011)。[4] Kenzelmann,M。Pauli受限的超导体中的异国情调磁状态。众议员prog。 物理。 80,众议员prog。物理。80,
1美国休斯顿大学休斯顿大学物理系77204,美国2杜克大学,北卡罗来纳州达勒姆大学27708,美国3 Helmholtz研究学院HESSE HESSE HESSE(HFHF)GSI HELMHOLTZ HELMHOLTZ中心GSI HELMHOLTZ CENTRIC for ION heave Ion Physicics fornis frankfurt,60438 Frankfurtirant frankfurtirant frankfurt。 Physik,Johann Wolfgang Goethe-Universität,Max-von-laue-STR。1,D-60438德国法兰克福5 GSIHelmholtzentrumfürSchwerionenforschungGmbh,Planckstrasse 1,D-64291 D-64291德国Darmstadt,德国6宾夕法尼亚州立大学,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州16801,宾夕法尼亚州宾夕法尼亚州立大学Universit`A di Torino和INFN Torino大学,通过P. Giuria 1,I-10125,I-10125,意大利的I-10125,8物理学系和量子理论实验室,极端理论,伊利诺伊州芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥大学60607,美国9 Kadanoff理论中心,芝加哥大学,芝加哥,伊利诺伊州芝加哥大学6066637,美国芝加哥,
1个纳米技术小组,用户 - 纳米纳布,萨拉曼卡大学,萨拉曼卡大学,塞拉梅尔广场,特林里奇建筑,37008,西班牙萨拉曼卡2加州纳米科学和纳米技术研究所,CSIC和BISTI,BISTI,BISTI,BERCUS UAB,UAB,BELLATERRA,BELLATERRA,0893 BATITA,SPINES,FITIS,FINE,弗里,FINE,393 BARCEN,FINE,FINE,FINE,FINE,FINE,林库,FINE,FINE,FINE,3。 24210-346 NITITIROI RJ,巴西4 GISC,DeFísicade Carteres,Cromputense大学,28040,西班牙马德里,55040,加利福尼亚州伯克利大学,加利福尼亚大学94720,美国64720,美国6材料科学司,伯克利国家实验室,伯克利材料机构,美国64777777777770年7月7日科学,1-1 Namiki,Tsukuba,305-0044,日本8国际材料纳米级核库中心,国家材料科学研究所,1-1 Namiki,Tsukub,Tsukub 305-0044,日本9.日本9. Avançats,08010巴塞罗那,西班牙11号Minho和Porto University(CF-HUM-UP),Braga,Braga,葡萄牙12 InstitutodeFísicaInstitutodeFísica,联邦联邦政府Rio De Janeiro,C.P。68528,21941-972里约热内卢RJ,巴西
费米子超级流动性,除了召开的bardeen-cooper-schrieffer状态之外,具有非平凡的库珀配对是在量子多体系统中引人入胜的研究领域。尤其是,用有限摩托的对超导状态的寻找长期以来一直是一个挑战,但是建立其存在一直遭受了缺乏适当的探测来揭示其动力的障碍。最近,有人提出,非肾脏电子传输是有限摩托对的最强大的探测器,因为它直接将其与超级流相结合。在这里,我们揭示了与三色超晶格上的非重新传输的配对状态,并具有强旋轨耦合,并结合了由原子上薄的D-波超导体cecoin 5组成的倒置对称对称性。我们发现,虽然在HT平面中的低温(t)/高磁场(t)/高磁场(h)角在HT平面中表现出明显的倾角异常,用于H,用于ht-Plane的h,沿ht-Wave间隙的抗闭合方向应用,但这种沿节结节的ht肌nodal方向不存在此类异常。通过仔细地隔离涡流动力学引起的外部效应,我们揭示了存在的非逆局响应,该反应源自以固有的摩肌对特征的固有超导特性。我们将高端状态归因于螺旋超导状态,其中阶参数的相位是自发的空间调制。
旋转的Chern拓扑阶段在固态系统中更为自然,被认为存在于两个或三个维度。迄今为止,尚无证据表明在非全能维度中存在旋转的Chern拓扑阶段。分形提供了一个平台,用于探索非企业维度中新颖的拓扑阶段和现象。在这里,基于语音分形晶格,我们在非智能尺寸中实验证明了旋转阶段的存在。我们发现,与晶体晶格相比,旋转的Chern相在分形晶格中被压缩。我们还强调了自旋极化拓扑保护边缘状态的鲁棒性和单向性,即使动量空间不明显也是如此。有趣的是,声音在分形晶格的边界上的传播速度比晶格晶格的传播速度快。丰富的自旋偏边状态和增加的速度不仅可以激发其他非智能尺寸系统的进一步研究,而且还为设计多通道片上通信设备的设计提供了机会。