添加剂制造(AM)赋予了高性能蜂窝材料的创造,强调了对可编程和可预测能量吸收能力的日益增长的需求。这项研究评估了精确调整的融合纤维纤维制造(FFF)过程对通过多尺度实验和预测建模的2D-热塑料晶格材料的能量吸收和失效特性的影响。宏观厚度和薄壁晶格的平面内压缩测试,以及它们的μ-CT成像,揭示了相对密度依赖的损伤机制和故障模式,从而促使开发可靠的预测建模框架以捕获过程诱导的性能变异和损害。对于较低的相对密度晶格,这是一种基于扩展的排水沟 - 武器材料模型的Fe模型,将Bridgman的校正与危机失败标准融合在一起,可准确捕获破碎的响应。随着晶格密度的增加,沿珠珠界面的界面损伤变得占主导地位,因此需要使用微观粘性区模型富集该模型以捕获界面剥离。预测建模引入了增强因素,是一种直接的方法来评估AM过程对能量吸收性能的影响,从而促进了FFF打印的晶格的逆设计。这种方法对如何优化FFF流程进行了批判性评估,以实现最高可实现的性能并减轻架构材料的故障。
建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
离散时间量子游动是经典随机游动的量子泛化,为凝聚态系统的量子信息处理、量子算法和量子模拟提供了框架。量子游动的关键特性是其量子信息应用的核心,与经典随机游动相比,量子游动在传播中可以实现参数量子加速。在这项工作中,我们研究了量子游动在渗透产生的二维随机晶格上的传播。在拓扑和平凡分步游动的大规模模拟中,我们在不同的时间尺度上确定了不同的预扩散和扩散行为。重要的是,我们表明,即使是任意弱的随机移除晶格位点浓度也会导致超扩散量子加速的完全崩溃,从而将运动降低为普通扩散。通过增加随机性,量子游动最终会由于 Anderson 局域化而停止扩散。在局域化阈值附近,我们发现量子游动变为亚扩散。量子加速的脆弱性意味着随机几何和图上的量子游动的量子信息应用将受到巨大限制。
1 Jara-Fit和第二届物理研究所,RWTH亚尚大学,52074,德国亚兴2彼得·格伦伯格研究所(PGI-9),福尚斯特里姆·尤里奇·吉利希·吉姆布斯(ForschungszentrumJülichGmbh) ForschungszentrumJülichGmbH,52425尤利希,德国5 5号电子和光学材料研究中心,美国国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本6日6日6研究中心,NANOARCHITONICS,NANOARCHITOCICS,NANOCHITOCITIC物理学,亚太大学的物理学和未来信息技术的Jara基础知识,52062德国亚兴8 Max Planck物质结构与动态研究所,免费电子激光科学中心,22761汉堡,德国,德国1 Jara-Fit和第二届物理研究所,RWTH亚尚大学,52074,德国亚兴2彼得·格伦伯格研究所(PGI-9),福尚斯特里姆·尤里奇·吉利希·吉姆布斯(ForschungszentrumJülichGmbh) ForschungszentrumJülichGmbH,52425尤利希,德国5 5号电子和光学材料研究中心,美国国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本6日6日6研究中心,NANOARCHITONICS,NANOARCHITOCICS,NANOCHITOCITIC物理学,亚太大学的物理学和未来信息技术的Jara基础知识,52062德国亚兴8 Max Planck物质结构与动态研究所,免费电子激光科学中心,22761汉堡,德国,德国
报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。
摘要 - 当代移动机器人导航架构采用计划算法提供单个最佳遵循路径的构建,在有动态和不确定的环境的情况下存在缺陷。随着环境的更新和机器人的起始状态发生变化,最佳计划通常会围绕离散障碍物进行,这对于遵循强烈有偏见的路径遵循计划的路线而言,这是有问题的。在本文中,我们重新制定了有效自适应状态晶格(EASL)所采用的搜索过程,以利用从观察到的环境中提取的同质类别。这种方法,我们称之为拓扑感知有效自适应状态晶格(TAEASL),使用多个数据结构来控制图中节点的扩展,以在图中提供多个最小成本计划,以在不同的同型类别中提供多个最小成本计划。受到任何时间修复a*的方法的启发,搜索继续进行,直到无法进行进一步的扩展或达到最大搜索时间为止。为了验证Taeasl在现场机器人技术中的效用,它在现实世界中的越野环境数据上进行了测试,该数据由Clearpath Warthog无人接地车辆(UGV)收集,并能够生成多个解决方案。本文以讨论包括高速越野移动机器人导航在混乱的障碍物场中的讨论结束。
我们提出了一种新方法,通过操纵三维(3D)物质波孤子(MWS)的深度和中心来实现不同光学势阱之间的变换。通过平方算子法获得3D MWS,并通过使用分步傅里叶方法进行时间演化将其转换为其他类型(椭圆形/环形/项链形)。通过将变换后的孤子与使用平方算子法迭代获得的孤子进行比较,证明了我们方法的有效性和可靠性。由于电位的调制,可以观察到MWS的重新分布。在某些复杂的光学势阱中,我们展示了通过这种转换方法产生奇异的MWS,例如双回转模式。总体而言,可控孤子变换为全光切换、光信息处理和各种其他应用提供了绝佳的机会。
在范德华(Van der Waals)中观察到的非常规的平坦带(FB)超导性,可以为高-T C材料打开有希望的途径。在FBS,配对和超级流体重量量表与交互参数线性线性线性,这种不寻常的理由证明并鼓励促进FB工程的策略。二分晶格(BLS)自然托管FBS可能是特别有趣的候选者。在Bogoliubov de Gennes理论和BLS中有吸引力的哈伯德模型的框架内,揭示了准粒子本征的隐藏对称性。因此,我们展示了与跳跃术语的特征无关的配对和超流量的普遍关系。值得注意的是,只要受到两部分特征的保护,这些一般特性对疾病不敏感。
▶少量[1]←线性代码的等效性▶Meds [7]←矩阵代码的等效性▶Alteq [4]←交替的三线性形式的等效性▶霍克[5]←lattices的同态形态,lattices的同构嵌件,