摘要。传统上,公共卫生领域的一项新创新从最初的概念验证到引入国家计划的时间表是连续的,可能需要几十年的时间。在这里,我们讨论了一种新的淋巴丝虫病 (LF) 药物疗法的开发,以帮助消除公共卫生问题,以及这一过程是如何通过一组合作伙伴的共同努力而加速的。本文记录了这些合作伙伴如何共同努力并做出决策,从而加速了伊维菌素、乙胺嗪和阿苯达唑 (IDA) 三联疗法的开发和引入过程。合作伙伴能够将三联疗法从第一个临床疗效数据到在国家计划中实施的开发时间表从预计的 28 年缩短到不到 5 年,同时保持所有的安全标准。这种方法需要了解利益相关者、他们的角色、对数据以指导决策的需求,然后查看专注于优先考虑为决策提供信息的活动的时间表。这一过程依赖于所有利益相关者的密切参与和良好的沟通。通过这一练习,研究设计中增加了额外的早期数据审查点,研究并行进行而不是按顺序进行,并制定了一项计划,让所有利益相关者参与整个过程,以便他们能够在数据可用时做出决定。这一过程可以提供一些见解,说明全球卫生如何以新的方式合作,以加速提供促进健康和福祉的干预措施和战略。
成功翻译许多体外工程组织需要足够的血管化。本研究介绍了一种新型胶原蛋白衍生物,该衍生物含有多种识别肽,用于基于分选酶 A (SrtA) 和因子 XIII (FXIII) 的正交酶交联。SrtA 介导的交联能够在本体水凝胶中快速共同设计人类血液和淋巴微毛细血管和中尺度毛细血管。凝胶硬度的调节决定了新血管形成的程度,而血液和淋巴毛细血管的相对数量则重现了最初植入水凝胶的血液和淋巴内皮细胞的比例。生物工程毛细血管很容易形成管腔结构,并在体外和体内表现出典型的成熟标志物。次级交联酶因子 XIII 用于将 VEGF 模拟 QK 肽原位束缚到胶原蛋白上。这种方法支持在没有外源性 VEGF 的情况下形成血液和淋巴毛细血管。正交酶交联进一步用于生物工程水凝胶,其具有促血管生成和抗血管生成特性的空间定义聚合物组成。最后,基于微凝胶二次交联的大孔支架可实现独立于支持成纤维细胞的血管形成。总体而言,这项工作首次展示了使用高度通用的胶原蛋白衍生物共同设计成熟的微尺寸和中尺寸血液和淋巴毛细血管。
结果:53 名患者接受了 ASA 治疗,23 名(43%)接受了治疗(中位年龄 10 岁,IQR 6-14)。与拒绝治疗的患者相比,接受 ASA 治疗的患者更有可能出现大面积畸形:宫外分娩治疗手术、双侧畸形、口腔畸形、≥2 次侵入性治疗或气管切开术(p < 0.05)。所有有组织的患者均存在 PIK3CA 突变(13/23)。治疗指征包括口腔疼痛/水疱(12,52%)、复发性疼痛/肿胀(6,26%)或突然/持续肿胀(5,22%)。治疗计划通常为每天服用一片 81 毫克的药片(19,83%),持续 3-12 个月(8,42%)。18 名患者(78%)报告了治疗依从性。18 名患者的症状有所改善[78%;疼痛减轻(9, 39%)和肿胀减轻(8, 35%)。治疗导致部分缓解(14, 61%)或完全缓解(4, 17%)。三名患者出现口腔疱疹出血,停药后缓解。
抽象多个因素需要形成功能性淋巴管。在这里,我们在开发斑马鱼面部淋巴网络的亚群体过程中发现了分泌的蛋白SVEP1和跨膜受体TIE1的重要作用。面部网络的这一特定方面与血管内皮生长因子C(VEGFC)信号无关,否则是所有其他淋巴床中最突出的信号轴。此外,我们发现SVEP1突变体的多个特异性和新发现的表型标志也存在于TIE1中,但在TIE2或VEGFC突变体中不存在。这些表型在头部和躯干的淋巴脉管系统中观察到,以及在降低的流动条件下的背侧纵向吻合血管的发展中。因此,我们的研究证明了在淋巴管发生过程中TIE1信号传导以及斑马鱼中血管发育的重要功能。此外,我们在淋巴管植物的早期步骤中显示了SVEP1和TIE1之间的遗传相互作用,并证明斑马鱼以及人类SVEP1/SVEP1蛋白与相应的TIE1/SVEP1蛋白在体外的tie1受体结合。由于最近在人青光眼患者中报道了SVEP1和TIE2的复合杂合突变,因此我们的数据在体内环境中的tie信号传导中表现出SVEP1的作用具有临床意义。
心脏淋巴管在心脏的炎症,炎症,疾病和再生中起着重要作用。 人类胎儿心脏中发育中的心脏淋巴管与冠状动脉紧密相关,类似于斑马鱼心中的动脉。 我们确定了驻留在心外膜中的心脏淋巴内皮细胞的群体。 人类胎儿心脏的单核多核分析揭示了心脏内皮的可塑性和异质性。 此外,我们发现VEGFC在动脉内皮细胞中高度表达,为心脏淋巴发育的动脉缔合提供了分子基础。 使用细胞类型的集成分析,我们确定了由Prox1,淋巴管蛋白RELN标记的新型心脏淋巴内皮细胞种群,并富含ETV转录因子的结合基序。 我们报告了人类心脏淋巴管的第一个体内分子表征,并为了解胎儿心脏发育提供了宝贵的资源。心脏淋巴管在心脏的炎症,炎症,疾病和再生中起着重要作用。人类胎儿心脏中发育中的心脏淋巴管与冠状动脉紧密相关,类似于斑马鱼心中的动脉。我们确定了驻留在心外膜中的心脏淋巴内皮细胞的群体。人类胎儿心脏的单核多核分析揭示了心脏内皮的可塑性和异质性。此外,我们发现VEGFC在动脉内皮细胞中高度表达,为心脏淋巴发育的动脉缔合提供了分子基础。使用细胞类型的集成分析,我们确定了由Prox1,淋巴管蛋白RELN标记的新型心脏淋巴内皮细胞种群,并富含ETV转录因子的结合基序。我们报告了人类心脏淋巴管的第一个体内分子表征,并为了解胎儿心脏发育提供了宝贵的资源。
通讯作者:Malaz Yousef (malaz@ualberta.ca) 或 Raimar Löbenberg (rloebenberg@ualberta.ca),加拿大艾伯塔省埃德蒙顿市阿尔伯塔大学卡茨集团药学与健康研究中心药学和制药科学学院,T6G 2E1 收到日期,2021 年 7 月 27 日;修订日期,2021 年 10 月 5 日;接受日期,2021 年 10 月 6 日;出版日期,2021 年 10 月 8 日 摘要——淋巴系统的结构和生理学独特性使得很难描述其在维持我们健康方面的所有贡献。然而,在过去的二十年里,人们对该系统功能重要性的理解已经发生了变化,人们更加重视它在健康和疾病中发挥的独特作用。淋巴系统与许多疾病的病理生理学有关,包括癌症、各种代谢疾病、炎症和感染。此外,研究还表明,淋巴靶向制剂可增强药物通过淋巴系统进入血液,口服时可绕过肝脏首过代谢,从而提高生物利用度,改善药代动力学和毒理学特征。设计淋巴系统制剂需要了解许多因素,其中最重要的是它们将遇到的生理环境。因此,在本综述中,我们详细介绍了淋巴系统的基本结构,然后强调了药物输送到淋巴系统的治疗和药代动力学益处。我们还详细介绍了用于淋巴系统输送的药物和制剂的标准,并概述了该领域开展的各种研究。概述和主要里程碑每天约有 20-30 升血浆通过小动脉被输送到身体组织间质空间。其中约 90% 被通过小静脉重新吸收 (1)。剩余的液体通过淋巴管排回循环系统。这些血管与其他组织和器官一起构成了淋巴系统 (1-3)。淋巴系统主要维持液体稳态,但也在将膳食脂肪和亲脂性分子和实体从肠道运输到血液中起着关键作用。此外,它还参与所有免疫过程以及许多疾病和代谢紊乱,这些疾病和代谢紊乱将在本综述后面讨论 (4-6)。1652 年,托马斯·巴托林 (Thomas Bartholin) 首次将淋巴系统一词赋予该系统 (7)。然而,最早对淋巴系统的认识可以追溯到公元前 4 世纪,由希波克拉底和亚里士多德 (8)。在接下来的几个世纪里,淋巴系统对健康的重要性在很大程度上被忽视了。直到 1622 年,
抽样和样本量:采用集群抽样,以行政区作为评估单位 (IU)。由于乌马里亚地区只有三个行政区,因此根据国家消除淋巴丝虫病计划 (NPELF) 的指导方针,所有三个都被选为 IU。根据指导方针,必须从该地区选择至少四个 IU,然后必须从每个 IU 中选择四个集群。由于乌马里亚只有三个行政区,因此所有三个区都被选为本次评估调查的 IU。为了确保每个区具有足够的代表性,随机选择了四个集群。在这些集群中,三个来自农村地区,一个来自城市地区。在每个集群中,使用抽样间隔选择了 30 个家庭。因此,每个 IU 的样本量为 120 个家庭(4 个集群 x 30 个家庭-
460第三节:第17章:循环系统中循环和免疫淋巴系统中的淋巴管淋巴系统具有整个血管,称为淋巴管,可连续排出组织的间隙流体,并将其返回到心血管系统中。它还包含淋巴器官和结构(见下图17.1),可连续保持和清洁身体。图17.1这里显示的是人体的淋巴管和淋巴组织和器官。人体的淋巴脉管系统几乎与血管一样广泛,但是淋巴管仅将淋巴带入一个方向,从周围回到心脏。淋巴机器人包括淋巴结,扁桃体,红骨髓,胸腺和脾脏。
Chapter 5 – Results: Metrics and Measures 5-1 5.1 Introduction 5-1 5.2 Physiological Measures 5-1 5.2.1 Cardiovascular – Heart Rate Variability (HRV) 5-1 5.2.2 Endocrine/Lymphatic – Metabolic Markers 5-2 5.2.2.1 Cortisol 5-2 5.2.2.2 Nitrate 5-4 5.2.3 Endocrine/Lymphatic – Electrodermal Activity (EDA) 5-4 5.2.4 Nervous System / Neuromotor – Electroencephalography (EEG) 5-5 5.2.5 Nervous System / Neuromotor – fNIRS 5-6 5.2.6 Nervous System / Neuromotor – Thermography 5-7 5.2.7 Nervous System / Neuromotor – Pupillometry 5-7 5.2.8 Nervous System / Neuromotor – Eye Movements and Fixations 5-8 5.2.9 Musculoskeletal – Blink Rate 5-9 5.2.10肌肉骨骼 - 肌电图(EMG)(手臂和面部)5-10 5.2.11肌肉骨骼 - 姿势稳定性5-10 5.2.12肌肉骨骼 - 步态5-11 5-11 5.2.13肌肉骨骼 - 头部倾斜5-12
淋巴水肿是由于淋巴血管损伤或阻塞而导致的,导致淋巴液流体停滞,这会触发炎症,组织纤维化和脂肪组织沉积与脂肪细胞肥大。淋巴水肿的治疗被分为保守和手术方法。在手术治疗中,诸如淋巴细胞环吻合术和血管化淋巴结转移等方法随着它们专注于恢复淋巴流,构成生理治疗方法时引起了人们的注意。淋巴内皮细胞形成淋巴管的结构。这些单元具有纽扣状连接,可促进流体和白细胞的流动。大约10%的间隙流体通过淋巴毛细血管连接到静脉回流。Damage to lymphatic vessels leads to lymphatic fl uid stasis, resulting in the clinical condition of lymphedema through three mechanisms: In fl ammation involving CD4 + T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis;由CCAAT/增强子结合蛋白α与过氧化物酶体增殖物激活的受体γ相互作用调节的脂肪细胞肥大和脂肪组织沉积;以及由Th2细胞的过度活动引发的组织纤维化,导致促勃罗细胞因子(例如IL-4,IL-13)和生长因子TGF-β1的分泌。手术治疗有助于促进淋巴流体引流,但它们在治疗已经受损的淋巴管的有效性受到限制。因此,回顾淋巴水肿的病理生理学和分子机制对于补充手术治疗和探索新型治疗方法至关重要。