一个例子是棋盘游戏《外交》,玩家在游戏中与其他玩家协商非约束性联盟。要取得成功,AI 代理需要足够了解彼此,以识别自己的利益是否与其他玩家的利益一致。他们必须开发一个共同的词汇来传达他们的意图。尽管可能存在撒谎的动机,但能够进行可信的交流对他们大有裨益。他们必须克服对背叛的相互恐惧,以便达成一致并执行共同有益的计划。他们甚至可能学会建立与遵守协议有关的规范。为了提高这些合作技能,研究人员设计了外交的变体,以改变这些挑战的难度,例如引入商定的简单词汇或允许具有约束力的承诺。
由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
在识别分子机器(包括折叠有丝分裂染色体的冷凝剂和拓扑异构酶)方面取得了巨大进展。通过环挤出产生染色质环路的发现彻底改变了染色体折叠的领域。要了解这些机器如何用适当的尺寸折叠染色体,同时解散姐妹染色单体,需要确定如何调节和部署它们。在这里,我们概述了当前对这些机器和因素如何通过细胞周期依赖性表达,染色质定位,激活和非活性来调节,通过翻译后修改以及通过与其他因素以及染色质模板本身相互关联。仍然有许多关于如何调节冷凝剂和拓扑异构酶的开放疑问,但考虑到染色体折叠式折叠型的速度,似乎在未来几年中,其中许多可能会得到回答。
抽象的城市化区域是提供有趣数量的木材废物以作为可再生资源来解决的空间。由于这些区域的工作空间有限,因此使用了小的低功率木芯片。机器具有相似的功率,但市场上有不同的切割机制。本文介绍了四个具有四种不同切割机制的机器的研究:盘,鼓,两个圆柱和flail。根据janka分类的三种木材(灰,松树,云杉)的木制束,其硬度不同,十个横截面尺寸从10×10 mm到100×100毫米,以及10±2%的水分含量(MC)。在经过测试的机器中停止工作机构引起了V带传输的滑倒,从而保护了机器免受过载后果的影响。表明,在碎屑能力,鼓,圆盘,两个圆柱体和flail芯片方面,表现出最高和最低功能。根据木材类型和切割的机构,被测试机器切碎的材料范围从80×80 mm到10×10 mm。测试机器的平均能耗为2.07±0.73 kWh,滚筒芯片芯片记录的最大值为5.21±0.2 kWh。木材和横截面是能源消耗的关键因素,而削纸片模型的影响很小。考虑到化石燃料发电期间的平均排放为0.95千克CO 2每1 kWh,这些机器的产生从0.5千克CO 2 H -1至最大4.49 kg CO 2 H -1(平均1.97 kg CO 2 H -1)。假设一棵树每年从7千克CO 2吸收,则可以假设一棵树可从一年中的3个小时的机器工作中减少CO 2排放。这是一段时间要短得多,要比碎裂经过修剪过程的单个树的分支所需的时间要短得多。这允许维持正CO 2的降低平衡。
摘要。在任何网站或百科全书中,例如大不列颠或维基百科,在“启发式”条目下,人们可以从生活的各个领域找到许多定义,参考和示例。但是,本文的作者无法找到与技术相关的示例,尤其是在机械工程中。这个事实激发了我们解决这个主题,尤其是因为实践和日常生活中的许多具体示例似乎非常适合证明启发式方法论在技术科学中的相关性。根据作者,在这种情况下,涡轮机械似乎特别感兴趣。这是关键的机械,即,失败威胁人类生命的机械。因此,开发高级工具来分析它们的重要性,尤其是在整个操作范围内(稳定和不稳定)。使用这些工具,可以有效地在决策过程中使用其智力,直觉和常识。因此形成了经典的启发式共生。本文展示了一个名为Meswir的高级计算机系统,该系统是在Gdańsk(IMP PAN)的波兰科学院流体流量机械研究所开发的,该机械产生了一系列有趣的诊断信息,包括多个旋转和与不平衡载体有关的多个旋转和随机错误。该研究是使用高速,低功率涡轮机作为例子进行的。尽管没有正式的理论证明其正确性,但获得的结果有助于得出正确的结论并做出明智的决策,这是决策启发式方法的本质。
我们很快就要庆祝微机电系统 (MEMS) 诞生 60 周年,自 Nathanson 演示谐振栅极晶体管以来。回顾过去,MEMS 领域取得了长足的发展,在 20 世纪 80 年代实现了商业化,在过去十年的物联网时代,传感器得到了广泛采用和普及。该领域也经历了迅速的发展,渗透到了各个领域。本期特刊旨在关注物理 MEMS,诚邀您撰写有关 MEMS 传感器和 MEMS 执行器的评论和原创成果。我们也欢迎报道 MEMS 新应用的文章,因为趋势需要超越设备而实现系统集成。我们感兴趣的是关于 MEMS 封装技术和挑战的评论和新成果。我们还诚邀您撰写有关 MEMS 材料开发以及 MEMS 可靠性研究的文章。
近几十年来,半导体行业一直遵循摩尔定律,大约每两年就会将计算能力提升到一个新的水平。然而,随着制造节点演进的减速,被解读为“超越摩尔”的 3D 集成开始展现出延长摩尔定律寿命的潜力。3D 集成不仅针对水平方向的晶体管或芯片集成,而且最重要的是垂直方向的集成,从而形成一种新型半导体芯片,可容纳更高的晶体管密度,随着堆栈超过单层,计算能力将实现巨大飞跃。因此,本期特刊寻求 3D 集成技术的最新进展,包括研究论文、通讯和评论文章,重点关注特定技术,包括但不限于 3D 互连、键合技术、热管理、可靠性、共封装光学器件、集成新材料和设备以及 3D 集成应用。
我们开发了一种基于自主量子热机的经典计算物理模型。这些机器由连接到不同温度的几个环境的少数相互作用的量子比特 (qubit) 组成。这里利用流经机器的热流进行计算。该过程首先根据逻辑输入设置环境的温度。机器不断发展,最终达到非平衡稳定状态,从中可以通过辅助有限尺寸储层的温度确定计算的输出。这种机器,我们称之为“热力学神经元”,可以实现任何线性可分函数,我们明确讨论了 NOT、3-MAJORITY 和 NOR 门的情况。反过来,我们表明热力学神经元网络可以执行任何所需的功能。我们讨论了我们的模型与人工神经元(感知器)之间的密切联系,并认为我们的模型提供了一种基于物理的替代神经网络模拟实现,更广泛地说,是一种热力学计算平台。
我们考虑由共享经典或量子关联的局部平衡储存器驱动的热机。储存器由所谓的碰撞模型或重复相互作用模型建模。在我们的框架中,两个储存器粒子最初以热状态制备,通过幺正变换相互关联,然后与形成工作流体的两个量子子系统进行局部相互作用。对于特定类的幺正器,我们展示了应用于储存器粒子的变换如何影响传递的热量和产生的功。然后,我们计算随机选择幺正器时的热量和功的分布,证明总交换变换是最佳的。最后,我们根据机器微观成分之间建立的经典和量子关联来分析机器的性能。