血液系统恶性肿瘤包括多种血液、骨髓和器官相关疾病,由于耐药性、复发和治疗失败而带来重大挑战。癌症相关成纤维细胞 (CAF) 是肿瘤微环境 (TME) 的重要组成部分,最近已成为潜在的治疗靶点。在这篇综合综述中,我们总结了 CAF 在各种血液系统恶性肿瘤中的作用的最新发现,包括急性白血病、多发性骨髓瘤、慢性淋巴细胞白血病、骨髓增生性肿瘤和淋巴瘤。我们还探讨了它们在肿瘤进展、耐药性以及与其激活和功能有关的各种信号通路中的作用。虽然潜在机制和多种 CAF 亚型的存在带来了挑战,但针对 CAF 及其相关通路为开发创新治疗方法以改善血液系统恶性肿瘤患者的预后提供了一条有希望的途径。
人端粒是串联阵列,主要由染色体末端的5'-Ttaggg -3'核苷酸序列组成。1,2这些序列被认为具有2个主要功能:它们通过保护或限制染色体的末端来保留基因组完整性,从而防止了DNA修复机制不适当的降解,并防止细胞分裂期间遗传信息的丧失。在每种分裂的情况下,端粒缩短了约50至200个碱基对,因为DNA聚合酶和相关的细胞机制的固有能力可以复制染色体DNA滞后链的末端端。3当端粒缩短达到临界阈值时,称为干草液极限时,会触发细胞信号级联,导致衰老或凋亡。4,5
表观遗传修饰因其在癌症的发展和发展中,尤其是在上皮恶性肿瘤中的重要作用而被广泛认可。这些变化涉及对DNA分子及其相关蛋白的修饰,这些蛋白可以影响基因表达而不会改变DNA序列本身。鉴于它们的遗传性和可逆性,表观遗传修饰已成为癌症治疗的有吸引力的靶标。近年来,人们对开发表观遗传药物的兴趣越来越大,这些药物可以针对特定的修饰并可能克服治疗性抗性。许多癌症,例如乳腺癌,肺癌和大肠癌,是全世界最常见的上皮性恶性肿瘤。尽管在开发有针对性的疗法方面已经取得了显着进步,但耐药性仍然是一个重要的挑战,通常会导致治疗衰竭和疾病进展。表观遗传修饰,例如核动力学,DNA甲基化,共价组蛋白修饰,组蛋白变体和非编码RNA(NCRNA)(包括microRNA(miRNA/miR)和长NCRNA(LNCRNA)),都显示出在癌症中起着至关重要的作用。表观遗传修饰在癌症患者的耐药性发展中起着重要作用。然而,靶向这些修饰的药物,例如DNA甲基转移酶抑制剂和组蛋白脱乙酰基酶抑制剂,有可能逆转它们并恢复对标准疗法的敏感性(Steele等,2009; Vijayaraghaghavalu and Labhasetwar,2018; vijayaraghaghavalu and labhasetwar,2018; bao; bao; bao et al an and and and and and and and and。成功治疗的一个例子是使用5-aza-2' - 脱氧胞苷(5-aza-d)在膀胱癌细胞中逆转顺铂的耐药性。这种作用归因于Hoxa9基因启动子的脱甲基化(Xylinas等,2016)。使用这种药物是对抗耐药性的有前途的方法,特别是在血液学癌症类型的患者中。该研究主题的重点是上皮恶性肿瘤的表观遗传事件,尤其是其发展,性质和机械研究。首先,已知表观遗传改变在上皮恶性肿瘤的发展中起着重要作用,也可以作为预测其结果的生物标志物。在这个研究主题中,Ye等。探索84个与甲基化相关基因(MRGS)的作用
图5。动物内剂量升级非人类灵长类动物(NHP)的毒性研究表明,DAR 8与基准接头付费量DXD结合的ICAM-1抗体与良好的抗体暴露良好耐受性。证明ICAM-1可以成为基于拓扑异构酶I的ADC的安全目标。分别用10 mg/kg,20 mg/kg和41 mg/kg/kg icam -1 -dxd在第1、15和29天静脉内给予两只雌雄猴子,每性别一只猴子,分别用10 mg/kg,20 mg/kg和41 mg/kg/kg ICAM -1 -DXD给药(如红色箭头指示)。血样,以确定血浆中总抗体浓度。所有动物一直存活到研究结束,没有任何可观的体重减轻或遇到痛苦的迹象。在血液学,临床化学和凝血分析中没有观察到的发现。在组织和器官的总体和微观检查中未观察到异常。计划对ICAM -1 -VC001进行NHP研究。
哺乳动物雷帕霉素靶蛋白 (mTOR) 是一种调节细胞生长、增殖和存活的关键蛋白激酶 (1)。mTOR 通路的激活与多种恶性肿瘤的发展有关 (2,3)。这种蛋白激酶主要通过 AKT 和结节性硬化症复合体 (TSC1/TSC2) 的 PI3K 通路激活 (1)。该通路还受肿瘤抑制因子(如 STK11 和 NF1 )的调节,这些因子在不同癌症中经常发生改变 (4,5)。STK11 (也称为 LKB1 )通过激活 AMPK 和磷酸化 TSC2 来激活 mTOR,而 NF1 通过终止 RAS 蛋白的活性状态来阻止下游 mTOR 通路的激活 (4,5)。TSC1、TSC2、STK11 和 NF1 基因突变可导致 mTOR 通路失调并促进肿瘤细胞生长 (6)。因此,抑制 mTOR 可以成为一种治疗携带肿瘤抑制因子(如 STK11、NF1、TSC1 和 TSC2)突变的实体肿瘤的方法。
摘要随着细胞在有丝分裂过程中复制其DNA,由于DNA复制过程的固有局限性,端粒缩短了。维持端粒长度对于癌细胞克服端粒缩短引起的细胞衰老至关重要。端粒酶逆转录酶(TERT)是端粒酶的限速催化亚基,端粒酶是RNA依赖性的DNA聚合酶,可延长端粒DNA以维持端粒稳态。tert启动子突变。此外,TERT启动子高甲基化也会导致TERT转录增加,已在dend依膜瘤和小儿脑肿瘤中使用。在高度癌症的气氛中观察到的TERT失调的高频使端粒酶活性成为开发新型疗法的有吸引力的靶标。在这篇综述中,我们简要讨论正常人类细胞中TERT的正常端粒生物学以及TERT的结构,功能和调节。我们还强调了TERT在癌症生物学中的作用,重点是原发性中枢神经系统肿瘤。最后,我们总结了TERT启动子突变在癌症中的临床意义,这些突变促进造成肿瘤的分子机制以及针对TERT的癌症疗法的最新进展。
最新的治疗方法改善了血液系统恶性肿瘤患者的治疗效果,但复发、治疗耐药性以及副作用仍然是这些治疗方法的常见限制。鉴于现有传统治疗方法的缺点,开发毒性和副作用较小的更有效的药物至关重要。草药在历史上已被证明是治疗白血病和淋巴瘤的潜在药物库,如今它们仍然是识别新药线索的丰富来源。植物源天然产物和常见化疗药物的积极协同作用也被认为是在最近的化学预防和化疗研究中关注药用植物的合理原因之一。值得注意的是,通过加入纳米颗粒或抗体靶向递送植物源天然产物将是提高其生物利用度并提高其治疗效果的重要一步。在这项研究中,我们回顾了已批准和/或正在研究的用于治疗血液系统恶性肿瘤的植物源药物。 *通讯作者:Davood Bashash,博士,伊朗德黑兰 Shahid Beheshti 医科大学联合医学科学学院血液学和血库系血液学副教授。电子邮件:David_5980@yahoo.com
摘要虽然最近采用了许多靶向疗法来改善血液系统不良的治疗,但获得或内在的抗性却是其功效的重要障碍。因此,越来越需要识别新颖的,可靶向的途径,以进一步改善这些疾病的治疗。综合应力响应是一种响应失调的生长和代谢,在癌细胞中激活的信号传导途径,并且在暴露于许多疗法后,这似乎是一种这种可有针对性的途径,可改善对这些疾病的治疗。在这篇综述中,我们讨论了综合应激反应在血液系统恶性肿瘤生物学中的作用,其对靶向疗法的作用机理的关键参与,以及作为药理调节的目标,是血液学恶性肿瘤治疗的新策略。关键字:综合应力反应,PERK,PKR,GCN2,HRI,ATF4,血液恶性肿瘤,靶向治疗
了解癌症生物学和开发新型癌症治疗药物一直是癌症研究人员的目标。然而,新药的研发受到其漫长的开发时间、高昂的成本、高监管障碍和惊人的失败率的阻碍。鉴于癌症治疗药物开发的挑战,替代策略,特别是重新利用已获批用于其他适应症的“旧”药物,具有吸引力。伊曲康唑是 FDA 批准的三唑类抗真菌药物,已在临床上使用 30 多年。最近的药物重新利用筛选显示伊曲康唑通过抑制血管生成和多种致癌信号通路发挥抗癌活性。为了探索伊曲康唑在不同类型恶性肿瘤中的潜在用途,我们检索了与伊曲康唑在癌症中相关的已发表文献,并回顾了伊曲康唑在临床前和临床癌症研究中的作用机制。目前研究预测hedgehog信号通路是伊曲康唑抑制多种实体癌和血液癌的主要靶点,随着临床试验结果的公布,伊曲康唑有望成为一种新型抗肿瘤药物,可与一线抗肿瘤药物联合使用。
随着新型个性化癌症疗法的不断发展,富含合成嵌合抗原受体的 T 细胞(即嵌合抗原受体 T 细胞 (CAR-T) 细胞)已应用于临床实践。CAR-T 细胞能够识别并结合靶细胞表面的特定抗原(即所谓的肿瘤相关抗原)。这种创新方法已被批准用于治疗血液系统恶性肿瘤,也可作为造血干细胞移植的桥梁。含有修饰 T 细胞的药物的生产包括几个步骤 - 白细胞分离术、T 细胞活化、转导和最终 CAR-T 细胞的扩增。CAR-T 细胞的活化通过独立于主要组织相容性复合体的途径进行,这通常与免疫系统不受控制的反应和细胞因子释放综合征等不良反应有关。CAR-T 疗法只能在认证中心进行,并且需要不同医学学科的经验丰富的专家之间的密切合作。这决定了它的有效性。从采集和冷冻保存,到运输和改造,再到解冻和输注,每个步骤都受到严格控制,因为这对药物的质量和功效有着至关重要的影响。尽管 CAR-T 疗法已被证实具有益处,但它仍然只适用于符合明确标准的患者。然而,随着新适应症的出现,这些标准可能会发生变化。