。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 — 运动想象 (MI) 分类一直是基于脑电图 (EEG) 的脑机接口中的一个重要研究课题。在过去的几十年里,MI-EEG 分类器的性能逐渐提高。在本研究中,我们从时频分析的角度扩展了基于几何深度学习的 MI-EEG 分类器,引入了一种称为 Graph-CSPNet 的新架构。我们将这类分类器称为几何分类器,强调它们在源自 EEG 空间协方差矩阵的微分几何中的基础。Graph-CSPNet 利用新颖的流形值图卷积技术来捕获时频域中的 EEG 特征,为捕获局部波动的信号分割提供了更高的灵活性。为了评估 Graph-CSPNet 的有效性,我们使用了五个常用的公开 MI-EEG 数据集,在十一种场景中的九种中实现了接近最佳的分类准确率。Python 存储库可在 https://github 找到。 com/GeometricBCI/Tensor-CSPNet-and-Graph-CSPNet。
摘要:我们提出了一种非侵入性识别心脏异位激活的方法。异位活动会触发致命的心律不齐。因此,异位灶或最早激活位点(EAS)的定位是心脏病专家决定最佳治疗方面的关键信息。在这项工作中,我们通过最大程度地减少心脏模型预测的ECG之间的不匹配(在给定的EAS上的节奏),而在异位活动期间观察到的ECG来最大程度地降低心脏模型预测的ECG之间的不匹配,从而提出识别问题作为全局优化问题。我们的心脏模型在求解躯干中的心脏激活和正向bidomain模型的各向异性核心方程方面的量具有用于计算ECG的铅方法方法。我们在心脏表面上构建了损失函数的高斯过程替代模型,以执行贝叶斯优化。在此过程中,我们迭代评估较低的置信结合标准后的损失函数,该标准结合了探索表面与最小区域的开发。我们还扩展了此框架以结合模型的多个级别。我们表明我们的过程仅在11后收敛到最低。7±10。4迭代(20个独立运行),用于单项实现案例和3个。5±1。7迭代次数。我们设想可以在临床环境中实时应用此工具,以识别潜在危险的EAS。
在行为过程中记录的单个神经元活动种类繁多。然而,这些不同的单个神经元反应可以通过相对较少的神经共调节模式很好地描述。对这种低维神经群体活动结构的研究为大脑如何产生行为提供了重要的见解。几乎所有这些研究都使用线性降维技术来估计这些群体范围的共调节模式,将它们限制为平坦的“神经流形”。在这里,我们假设,由于神经元具有非线性响应并建立数千个可能放大这种非线性的分布式和循环连接,因此神经流形本质上应该是非线性的。结合猴子运动皮层、小鼠运动皮层、小鼠纹状体和人类运动皮层的神经群体记录,我们发现:1) 神经流形本质上是非线性的;2) 它们的非线性程度因结构不同的大脑区域而异;3) 在需要更多不同活动模式的复杂任务中,流形非线性变得更加明显。使用循环神经网络模型进行的模拟证实了电路连接和流形非线性之间的关系,包括结构不同的区域之间的差异。因此,行为产生背后的神经流形本质上是非线性的,随着神经科学家转向研究涉及日益复杂和自然行为的众多大脑区域,正确解释这种非线性将至关重要。
协方差矩阵学习方法因其在非线性数据中捕获有趣的结构的能力而在许多分类任务中变得流行,同时尊重基础对称的对称阳性(SPD)歧管的riemannian几何形状。最近通过学习基于欧几里得的嵌入方式,在分类任务中提出了几种与这些矩阵学习方法相关的深度学习体系结构。在本文中,我们提出了一个新的基于Riemannian的深度学习网络,以为脑电图(EEG)分类生成更具歧视性的特征。我们的关键创新在于学习Riemannian地理空间中每个班级的Riemannian Barycenter。提出的模型将SPD矩阵的分布归一化,并学习每个类的中心,以惩罚矩阵与相应类中心之间的距离。作为一种要求,我们的框架可以进一步减少阶层内距离,扩大学习特征的类间距离,并始终在三个广泛使用的EEG数据集中超过其他最先进的方法,以及来自我们在虚拟现实中的压力诱导的实验中的数据。实验结果证明了由于协方差描述符的鲁棒性以及考虑到riemannian几何形状上的Barycenters的良好有益的核心信号的非平稳性框架的优越性。
用于脑部计算机界面(BCIS)的解码器对神经活动的限制进行了约束,被选为反映11种科学信念,同时产生可拖动的计算。我们记录了缠结的低缠结(运动皮层神经轨迹的典型特性12)会产生异常的神经几何形状。我们将一个解码器设计为13个包含适合这些几何形状的统计约束。Mint采用以轨迹为中心的14方法:神经轨迹的库(而不是一组神经维度)提供了一个脚手架15近似于神经歧管的脚手架。每个神经轨迹具有相应的行为轨迹,16允许直接但高度非线性的解码。薄荷始终优于其他可解释的17种方法,并且在42个比较中的37种中优于表达式机器学习方法。与这18种表达方法不同,薄荷的约束是已知的,而不是优化解码器19输出的隐含结果。薄荷跨任务的表现良好,这表明其假设通常与20个神经数据统计数据相匹配。尽管行为与潜在的21个复杂的神经轨迹之间具有高度非线性的关系,但Mint的计算是简单,可扩展的,并且提供了可解释的数量22,例如数据可能性。Mint的性能和简单性表明,它可能是23个临床BCI应用的绝佳候选者。24
脑机接口 (BCI) 解码器假设神经活动受到约束,这些约束在产生可处理的计算的同时反映了 11 科学信念。我们记录了低缠结(运动皮层神经轨迹的典型特性 12)如何产生不寻常的神经几何形状。我们设计了一个解码器 MINT,以 13 接受适合这些几何形状的统计约束。MINT 采用以轨迹为中心的 14 方法:神经轨迹库(而不是一组神经维度)提供了近似神经流形的支架 15。每个神经轨迹都有相应的行为轨迹 16,允许直接但高度非线性的解码。MINT 始终优于其他可解释 17 方法,并且在 42 次比较中的 37 次中优于表达性机器学习方法。然而,与这些 18 种表达性方法不同,MINT 的约束是已知的,而不是优化解码器 19 输出的隐式结果。 MINT 在各项任务中表现良好,表明其假设通常与神经数据的统计数据非常匹配。尽管 MINT 包含行为与可能复杂的神经轨迹之间的高度非线性关系,但它的计算简单、可扩展,并提供可解释的数量,例如数据可能性。MINT 的性能和简单性表明它可能是临床 BCI 应用的绝佳候选者。
脑机接口 (BCI) 的解码器假设神经活动受到约束,这些约束既能反映科学信念,又能产生易于处理的计算。我们记录了低缠结(运动皮层神经轨迹的典型特性)如何产生不寻常的神经几何形状。我们设计了一个解码器 13 MINT,以接受这些几何形状的适当统计约束。MINT 采用以轨迹为中心的 14 方法:神经轨迹库(而不是一组神经维度)提供了一个近似神经流形的支架 15。每个神经轨迹都有相应的行为轨迹 16,允许简单但高度非线性的解码。MINT 的表现优于其他可解释方法 17,并且在 42 次比较中的 37 次中优于表达性机器学习方法。然而与这些方法 18 不同,MINT 的约束是已知的,而不是优化解码器输出的隐式结果。 MINT 在各项任务中表现良好,表明其假设通常与神经数据的统计数据非常吻合。尽管 20 包含行为与潜在复杂神经轨迹之间的高度非线性关系,21 MINT 的计算简单、可扩展,并提供可解释的数量,例如数据可能性。22 MINT 的性能和简单性表明它可能是临床 BCI 应用的绝佳候选者。23
所考虑的流形由标准形式的 σ 有限冯·诺依曼代数上的忠实正常状态组成。讨论了切平面和近似切平面。假设给出一个相对熵/散度函数。它用于推广连接一个状态到另一个状态的指数弧的概念。指数弧的生成器被证明是唯一的,直到加法常数。在荒木相对熵的情况下,冯·诺依曼代数的每个自伴元素都会生成一个指数弧。组合指数弧的生成器被证明是相加的。从荒木相对熵得出的度量被证明可以重现久保-森度量。后者是线性响应理论中使用的度量。e 和 m 连接描述了一对对偶几何。任何有限数量的线性独立生成器都会确定一个状态子流形,该子流形通过指数弧与给定的参考状态相连。这样的子流形是对偶平面统计流形的量子概括。
摘要 人类的运动学习能力差异很大,但人们对这种差异背后的神经机制知之甚少。最近的神经成像和电生理研究表明,大规模神经动力学存在于低维子空间或流形中,学习受到这种内在流形结构的限制。在这里,我们使用功能性磁共振成像询问受试者水平的神经偏移与流形结构的差异是否可以解释参与者之间的学习差异。我们让受试者连续两天在磁共振扫描仪中执行感觉运动适应任务,让我们能够评估他们几天的学习表现,并持续测量大脑活动。我们发现,认知和感觉运动大脑网络中流形活动的整体神经偏移与受试者几天的学习和再学习模式差异有关。这些发现表明,流形外活动提供了学习过程中不同神经系统相对参与度的指标,并且受试者在学习和再学习模式上的差异与认知和感觉运动网络中发生的重新配置过程有关。