高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
我们制定了良好的连续时间生成流量,用于学习通过F-差异的近端正规化在低维歧管上支持的分布。wasserstein-1近端运算符调节f- ddiverences可以比较单数分布。同时,Wasserstein-2近端运算符通过添加最佳运输成本(即动能惩罚)来使生成流的路径正规化。通过均值野外游戏理论,我们表明这两个接近物的组合对于配制良好的生成流量至关重要。可以通过平均场游戏(MFG)的最佳条件,汉密尔顿 - 雅各布(HJ)的系统以及向前连续性偏微分方程(PDE)的最佳条件进行分析,其解决方案表征了最佳生成流。对于在低维流形的学习分布中,MFG理论表明,Wasserstein-1近端解决了HJ终端状况,而Wasserstein-2近端是针对HJ动力学的,这既是相应地向后的PDE系统,都可以很好地置于范围内,并且是一个独特的范围。这意味着相应的生成流也是唯一的,因此即使在学习在低维流形的高维分布方面,也可以以强大的方式学习。通过对持续时间流的对抗训练来学习生成流,这绕开了对反向模拟的需求。我们证明了我们的方法生成高维图像的功效,而无需诉诸自动编码器或专业体系结构。
越来越多的需求减少复杂的高维二词系统为简单,低维模型产生了许多不同的还原技术(参见Benner等人。[1],Rowley和Dawson [2],Ghadami和Epureanu [3],Brunton等。[4],Taira等。[5]和Touzé等。[6]用于最近的评论)。在这里,我们专注于这些方法之一的扩展,频谱亚算物(SSM)还原到分段光滑的机械系统。最初针对Haller和Ponsioen [7]的平滑动力系统定义,主要SSM是最平稳的不变流形,与稳定状态下线性化系统的光谱子空间相切,并且具有相同的尺寸。因此,SSM数学上正式化并扩展了Shaw和Pierre [8,9]和Shaw等人在开创性工作中引入的非线性正常模式(NNM)的最初思想。[10](有关最近的评论,请参见Mikhlin和Avramov [11])。每当光谱子空间内的线性频谱与该子空间之外的线性频谱之间,SSM在自主和非自治系统中的存在,唯一性和持久性已得到证明(Haller and Ponsioen [7][12]以及Haro和de la llave [13])。由最慢的线性模式跨越光谱子空间的主要SSM切线吸引了附近的所有轨迹,因此其内部动力学是一种理想的,数学上合理的非线性降低模型。最近的工作揭示了在𝐶∞
视觉神经解码,即从大脑活动模式中解释外部视觉刺激的能力,是神经科学研究中的一项具有挑战性的任务。最近的研究集中于表征可以用群体级特征描述的多个神经元的活动模式。在本研究中,我们结合空间、光谱和时间特征来实现神经流形分类,该分类能够表征视觉感知并模拟人脑中的工作记忆活动。我们通过基于黎曼流形和二维 EEG 频谱图表示的自定义深度学习架构分别处理时空和光谱信息。此外,在查看 11 类(即全黑加 0-9 数字图像)MindBigData Visual MNIST 数据集时,使用基于 CNN 的分类模型对视觉刺激引起的 EEG 信号进行分类。在刺激引起的 EEG 信号分类任务上评估了所提出的集成策略的有效性,总体准确率达到 86%,与最先进的基准相当。
我们提出了一种机器学习方法,以研究与Sasakian和g 2斜角相关的拓扑数量,接触Calabi-yau 7-manifolds。具体来说,我们计算了某些Sasakian Hodge数字的数据集,以及对于7555可能的7555 P 4(W)Phoppactive空间中的7549,在7549的7549中为7549的7549(w)7549(w)的75倍(W),为crowley-n oddstrom的自然g 2结构的不变性。这些拓扑数量是通过高性能得分学习的,其中仅使用神经网络和符号回归器学习Sasakian Hodge数字,分别达到0.969和0.993。此外,相应的grobner碱基的性能是良好的,导致计算速度的大幅提高,这可能具有独立的关注。数据生成和分析进一步引起了要提出的新型猜想。
我们提出了一种机器学习方法,以研究与Sasakian和g 2斜角相关的拓扑数量,接触Calabi-yau 7-manifolds。具体来说,我们计算了某些Sasakian Hodge数字的数据集,以及对于7555可能的7555 P 4(W)Phoppactive空间中的7549,在7549的7549中为7549的7549(w)7549(w)的75倍(W),为crowley-n oddstrom的自然g 2结构的不变性。这些拓扑数量是通过高性能得分学习的,其中仅使用神经网络和符号回归器学习Sasakian Hodge数字,分别达到0.969和0.993。此外,相应的grobner碱基的性能是良好的,导致计算速度的大幅提高,这可能具有独立的关注。数据生成和分析进一步引起了要提出的新型猜想。
下托 (SUB) 在空间导航中起着至关重要的作用,其对导航信息的编码方式与海马 CA1 区不同。然而,下托群体活动的表征仍然未知。在这里,我们研究了在执行 T 迷宫和旷场任务的大鼠的 CA1 和 SUB 中细胞外记录的神经元群体活动。这两个区域中的群体活动轨迹都局限于与外部空间同态的低维神经流形。SUB 中的流形比 CA1 中的流形传达位置、速度和未来路径信息的解码精度更高。在大鼠和 CA1 和 SUB 的区域之间以及 SUB 中的任务之间,流形表现出共同的几何形状。在慢波睡眠中的任务后波动期间,群体活动在 SUB 中比在 CA1 中更频繁地表示奖励位置/事件。因此,CA1 和 SUB 将信息明显地编码到神经流形中,这些流形是清醒和睡眠期间导航信息处理的基础。
方法:在目前的工作中,我们引入了拉普拉斯矩阵,以将功能连接特征(即相位锁定值(PLV),Pearson相关系数(PCC),频谱相干(COH)和共同信息(MI)转换为半阳性运营商,以确保转换为正面的功能。然后,使用SPD网络来提取深空信息,并采用完全连接的层来验证提取特征的效果。,决策层融合策略用于实现更准确和稳定的识别结果,并研究了不同特征组合的分类性能的差异。更重要的是,还研究了应用于功能连接功能的最佳阈值。